Learning from Cohort Data

mainly for chronic disorders and their comorbidities

Myra Spiliopoulou

Dec 10, 2020

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Mission: Serve the medical researchers, and through them physicians and patients

Approach: We develop

- ML methods for learning on streams of data for each patient
- ML methods for filling the gaps
- ML methods for the acquisition of labels, features and constraints
- Complete workflows and frameworks

In parallel, we work on experimental data:

- experiments and studies on human behaviour [analy
- experiments on crowdworking

[analysis] [our own designs]

Our projects and our inspiring partners

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

.

Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Ongoing Projects:

- ImmunLearning (2019 2022): EFRE project on a diagnostic test for immunocompetence for elderly people (with U Med OVGU)
- CHRODIS+ (2017-2020) EU Joint Action on "Implementing good practices for chronic diseases"
- * UNITI (2020-2022) EU project on "Unification of Treatments and Interventions for Tinnitus Patients"

Further cooperations in medical research:

- · Learning on longitudinal epidemiological data (U Med Greifswald)
- · Intelligent wearables for patients with diabetic foot (U Med Magdeburg)
- · Phenotyping, patient evolution clinic & m/eHealth (U Med Regensburg)
- · Phenotyping and patient response to treatment (CHARITE)

The KMD Team

Clara Puga

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

(almost) all users

 \rightarrow Interpreting the gaps

Closing

Vishnu Unnikrishnan

Rafi Trad

Anne Rother

Agenda

Learning from
Cohort Data
Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

This is Part III of Tutorial 8:

- Structure of clinical data; prediction methods; open challenges
- Structure of mobile, dynamic data; prediction methods; open challenges

RECALL: The CRISP-DM Circle

[Chapman et al., 2000]

²downloaded at Nov 26, 2020

Chronic Disorders / Diseases / Conditions

Example 2: Tinnitus

Tinnitus as subject of research

Rationale

Although much progress has been made, tinnitus remains a scientific and clinical enigma of high prevalence and high economic burden.

A large variety of patient characteristics - including genotyping, aetiology, and phenotyping - are poorly understood, because **integrated systems approaches are still missing** to correlate patient's characteristics to predict responses to combinatorial therapies.

This project has received funding from European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No°848261.

⁵H2020 project UNITI 'Unification of Treatments and Interventions for Tinnitus Patients', since Jan 1, 2020

Medical Data

Example: The Tinnitus Case History Questionnaire ⁶ cf. [Langguth et al., 2007]

"Items list" for tinnitus case history questionnaires

Items are ordered according to their level of significance: Category "A" (= essential) in bold type.

Background

- 1. Age.
- 2. Gender.
- Handedness.
- 4. Family history of tinnitus (parent, sibling, children).

Tinnitus history

- 5. Initial onset. Time?
- 6. Initial onset. Mode? Gradual or abrupt?
- Initial onset. Associated events? Hearing change, Acoustic trauma, Otitis media, Head trauma, Whiplash, Dental Treatment, Stress, Other.
- 8. Pattern. Steady? Pulsatile? Other?
- 9. Site. Right ear? Left ear? Both ears? (symmetrical?) Inside head?
- 10. Intermittent or constant?
- 11. fluctuant or non-fluctuant?
- 12. Loudness. Scale 1-100. At worst & at best?
- 13. Quality. Own words / Give a list of choices.
- 14. Pure tone or Noise? Uncertain / polyphonic?
- 15. Pitch. Very high? High? Medium? Low?
- 16. Percentage of awake time aware of tinnitus?
- 17. Percentage of awake time annoyed by tinnitus?
- 18. Previous tinnitus treatments (no, some, many)?
- Modifying influences
 - 19. Natural masking? Music, everyday sounds, other sounds?
 - 20. Aggravated by loud noise?
 - 21. Altered by head and neck movement or touching of head or upper limbs (specification of the respective movements)?
 - 22. Daytime nap. Worse? Better? No effect?
 - 23. Effect of nocturnal sleep on daytime tinnitus?
 - 24. Effect of stress?
 - 25. Effect of medications? Which?
- Related conditions
 - 26. Hearing impairment?
 - 27. Hearing aids (No, left ear, right ear, both ears; effect on tinnitus)?
 - 28. Noise annoyance or intolerance?
 - 29. Noise induced pain?
 - 30. Headaches?
 - 31. Vertigo/dizziness?
 - 32. Temporomandibular disorder?
 - 33. Neck pain?
 - 34. Other pain syndromes?
 - 35. Under treatment for psychiatric problems?

As an example of how the above items can be expressed for patients to complete see the

TINNITUS SAMPLE CASE HISTORY QUESTIONNAIRE (TSCHQ)

 $^{{}^{6}}_{\rm https://www.tinnitusresearch.net/images/files/migrated/consensusdocuments/en/Items-list.pdf, downloaded: Nov 26, 2020$

Medical Data for Learning

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Learn what?

. . .

- \rightarrow the effects of a treatment
- $\rightarrow \,$ the side-effects of a treatment
- ightarrow the symptoms
- ightarrow the comorbidities

on different subpopulations

... and identify predictive features

Medical Data for Learning

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Learn what?

. . .

- \rightarrow the effects of a treatment
- $\rightarrow \,$ the side-effects of a treatment
- ightarrow the symptoms
- ightarrow the comorbidities

on different subpopulations

Learn for whom?

- the physician
- the medical researcher

... and identify predictive features

Medical Data for Learning

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Learn what?

. . .

- \rightarrow the effects of a treatment
- \rightarrow the side-effects of a treatment
- ightarrow the symptoms
- ightarrow the comorbidities

on different subpopulations

Learn for whom?

- the physician
- the medical researcher

Learn on what?

- · on an export of patient records
- · on a cohort
- · on multiple cohorts

... and identify predictive features

Cohorts

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

The term "cohort"

Quoting [Glenn, 2005], page 2: "The term *cohort* originally referred to a group of warriors or soldiers, and the term is now sometimes used in a very general sense to refer to a number of individuals who have some characteristic in common."

Cohorts

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors Learning on user

inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

The term "cohort"

Quoting [Glenn, 2005], page 2: "The term *cohort* originally referred to a group of warriors or soldiers, and the term is now sometimes used in a very general sense to refer to a number of individuals who have some characteristic in common."

The term "cohort" in "cohort analysis"

Quoting [Glenn, 2005], page 2: "Here and in other literature on cohort analysis, however, the term is used in a more restricted sense to refer to those individuals (human or otherwise) who experienced a particular event during a specified period of time. ...

Learning on the cohorts of an RCT

Randomised Clinical Trial

- Development of a robust RCT protocol for single and combinational therapies
- · Harmonization of interventions among clinical centers
- · Recruitment of tinnitus patients for the RCT
- · Conduction of the RCT
- Validation of the Decision Support System (DSS)

5 clinical centers

- Klinikum der Universitaet Regensburg (REG)
- Katholieke Universiteit Leuven (KUL)
- Charité Universitaetsmedizin Berlin (CHA)
- Ethniko Kai Kapodistriako Panepistimo Athinon (UOA)
- Servicio Andaluz de Salud (GRA)

This project has received funding from European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No'848261.

UNI

Business understanding $\rightarrow \ldots \rightarrow$ Learning

Learning from Cohort Data	
Myra Spiliopoulou	
Medical Mining in the KMD Lab	
Business Understanding	
Termini	
Medical data for learning	
Learning on Static Data	
Prediction with few features	
Data drain	
Learning on Dynamic Data	
Learning on sensors	
Learning on user inputs	
\rightarrow Learning from the 'long' users	Narrowing down the subject area: Small datasets, large feature spac
\rightarrow Prediction for (almost) all users	and two goals: assist the medical researcher, while reducing the data
\rightarrow Interpreting the gaps	demand.
Closing	

Learning: static data first

Learning from
Cohort Data
Myra Spiliopoulou
Medical Mining in
the KMD Lab
Business
Understanding
Termini
Medical data for
learning
Learning on Static
Data
Prediction with few
features
Data drain
Learning on
Dynamic Data
,
Learning on sensors
Learning on user
inputs
Looming from the
'long' users
iong asols
→ Prediction for
(almost) all users
\rightarrow Interpreting the
gaps
Closing

Learning: static data first

Learning from Cohort Data Myra Spiliopoulou Medical Mining in the KMD Lab	
Business Understanding	
Termini	
Medical data for learning	ightarrow To what extend can we predict an outcome after treatment (T1), when
Learning on Static Data	using only features recorded before treatment (T0) ?
Prediction with few features	\rightarrow How to build a minimal set of cumulatively predictive features?
Data drain	
Learning on Dynamic Data	
Learning on sensors	
Learning on user inputs	
\rightarrow Learning from the 'long' users	
\rightarrow Prediction for (almost) all users	
\rightarrow Interpreting the gaps	
Closing	

Closing

⁷Figure 1 from [Niemann et al., 2020b]

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lah

Medical data for learning

Learning on Static

Prediction with few features

Dynamic Data

Learning on sensors Learning on user

 \rightarrow Learning from the 'long' users

 \rightarrow Interpreting the gaps

Model learning on T0 to predict T1 for target TQ_score $\in \{0, 1\}$

11 algorithms: LASSO, RIDGE, Generalized Partial Least Squares (GPLS), SVM, a feedforward NN with one hidden layer, weighted kNN, NB, CART, C5.0, RF, Gradient Boosted Trees (GBT) hyperparam selection: grid search k=10 folds: 10-fold stratified cross validation

AUC: as performance measure

Feature filtering and scoring

Model reliance [Fisher et al., 2018]: of feature f as "classification error on the original training set [vs] classification error on a modified version of the training set where the values of f are randomly permuted."

SHAP value [Lundberg and Lee, 2017] of feature f for instance x "as change in the expected value of the prediction if for f the feature vector of x is observed instead of [a] random [one]"

Prediction and Minimization of the Feature Space

[Niemann et al., 2020b]

⁸Figure 6 from [Niemann et al., 2020b]: (A) features sorted on importance, and achieved AUC of a feature and its predecessors; (B) graph of correlations (for absolute values of 0.5 and higher)

8

Learning on static data

Learning from Cohort Data	
Myra Spiliopoulou	
Medical Mining in the KMD Lab Business Understanding Termini Medical data for learning Learning on Static	
Data	
Prediction with few features Data drain	
Learning on Dynamic Data	
Learning on sensors	
Learning on user inputs	
\rightarrow Learning from the 'long' users	Workflows for learning on static data and showing the solutions
→ Interpreting the gaps	$\sqrt{1}$ First attempts to sort out features from a huge feature space
Closing	

The feature space and the data drain problem

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors Learning on user

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Data collection: 4,103 tinnitus patients, older than 18 treated at the Tinnitus Center of Charité Universitätsmedizin Berlin between Jan. 2011 and Oct. 2015, 2having tinnitus for at least 3 months

Four studies:

/ Prediction and feature space minimization [Niemann et al., 2020b]:1,416 patients

Phenotypes at T0 and T1 [Niemann et al., 2020d]: 1,228 patients

- Predicting depression severity after treatment [Niemann et al., 2020c]: 1,490 patients
- Identifying gender-specific differences among chronic tinnitus patients [Niemann et al., 2020a]: 1,228 patients (m:609, f:619)

What makes the difference?

The feature space and the data drain problem

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors Learning on user

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Data collection: 4,103 tinnitus patients, older than 18 treated at the Tinnitus Center of Charité Universitätsmedizin Berlin between Jan. 2011 and Oct. 2015, 2having tinnitus for at least 3 months

Four studies:

/ Prediction and feature space minimization [Niemann et al., 2020b]:1,416 patients

Phenotypes at T0 and T1 [Niemann et al., 2020d]: 1,228 patients

- Predicting depression severity after treatment [Niemann et al., 2020c]: 1,490 patients
- Identifying gender-specific differences among chronic tinnitus patients [Niemann et al., 2020a]: 1,228 patients (m:609, f:619)

What makes the difference? The medical objective

Learning on small static data

Learning from Cohort Data		
Myra Spiliopoulou		
Medical Mining in the KMD Lab		
Business Understanding		
Termini		
Medical data for learning		
Learning on Static Data		
Prediction with few features		
Data drain		
Learning on Dynamic Data		
Learning on sensors		
Learning on user inputs	Open issues:	
\rightarrow Learning from the 'long' users	\rightarrow how to reduce the feature space	
→ Prediction for (almost) all users		.
\rightarrow Interpreting the	… and thus reduce the data demand	[working on that]
gaps	> how to evolut time and deal with gone	[comoo povt]
Closing	\rightarrow now to exploit time and deal with gaps	[comes next]

Learning patterns of movement for patient wellbeing

Learning from Cohort Data Myra Spiliopoulou

Example: Wandering

Medical Mining in the KMD Lab

Business Understanding

Termini Medical data for

learning

Learning on Static Data

Prediction with fev features

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

"Wandering is among the most frequent, problematic, and dangerous behaviors for elders with dementia. Frequent wanderers likely suffer falls and fractures, which affect the safety and quality of their lives." [Lin et al., 2012]

 "Travel behavior of nursing home residents perceived as wanderers and non-wanderers" [Martino-Saltzman et al., 1991]

 "Detecting wandering behavior based on GPS traces for elders with dementia" [Lin et al., 2012]

"Location prediction using GPS trackers: Can machine learning help locate the missing people with dementia?" [Wojtusiak and Nia, 2019]

... on mitigating the side-effects of smartphone battery-saving

"Inferring Mobility Measures from GPS Traces with Missing Data" [Barnett and Onnela, 2020]

9

⁹Thanks to Priyanka Mohan for the literature collection and to Dr. Nadine Diersch – Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg – working on real-world navigation behavior 23/47

The arrowline of the mHealth potential

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

 $\textit{Measurement} \rightarrow \textit{Diagnostic} \rightarrow \textit{Treatment/prevention} \rightarrow \textit{Global}$

where Measurement encompasses:

- ightarrow on-person or embedded sensor sampling in real time
 - · Global Positioning System
 - Ecological Momentary Assessment

Conversion of the

"raw sensor data into meaningful information related to behaviors, thoughts, emotions ... and clinical states and disorders." [Mohr et al., 2017]

Converting sensor data into information

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understandin

Termini

Medical data for learning

Learning on Static Data

Prediction with fev features

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

The "sensemaking" approach of [Mohr et al., 2017]:

- * Clinical state
- $\uparrow\,$ "Behavioral marker: behaviors, thoughts, feelings, traits, or states \ldots "
- ↑ "[Low level] feature: a measureable property of a phenomenon, which is proximal to, and constructed from, sensor data"
 - ↑ Raw sensor data

Converting sensor data into information

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understandin

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

The "sensemaking" approach of [Mohr et al., 2017]:

* Clinical state

- $\uparrow\,$ "Behavioral marker: behaviors, thoughts, feelings, traits, or states \ldots "
- ↑ "[Low level] feature: a measureable property of a phenomenon, which is proximal to, and constructed from, sensor data"
 - ↑ Raw sensor data

Example

[Mohr et al., 2017] (Sections 2.3, 3.1)

- · Behavioral marker: Sleep disruption
- Low-level features: Bedtime/waketime, phone usage, movement intensity, ambient noise
- · Clinical targets: depression, bipolar disorder, schizophrenia

The arrowline of the mHealth potential

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with fev features

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

 $\text{Measurement} \rightarrow \text{Diagnostic} \rightarrow \text{Treatment/prevention} \rightarrow \text{Global}$

where Measurement encompasses:

- $\cdot \,$ on-person or embedded sensor sampling in real time
- · Global Positioning System
- ightarrow Ecological Momentary Assessment

The arrowline of the mHealth potential

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

.earning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

 $\text{Measurement} \rightarrow \text{Diagnostic} \rightarrow \text{Treatment/prevention} \rightarrow \text{Global}$

where Measurement encompasses:

- $\cdot \,$ on-person or embedded sensor sampling in real time
- · Global Positioning System
- ightarrow Ecological Momentary Assessment

"Ambulatory assessment"

[Fahrenberg et al., 2007]

Quoting from https://psycnet.apa.org/record/2007-18155-002:

Ambulatory assessment refers to the use of computerassisted methodology for self-reports, behavior records, or physiological measurements, while the participant undergoes normal daily activities. ...

CHRODIS+ "Implementing good practices for chronic diseases" ¹⁰

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Medical data for

learning

Learning on Static Data

Prediction with few features

Learning or

Dynamic Data

Learning on sensors

Learning on use inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Joint Action (09/17-11/20) funded by the EU and participating organisations

GOAL: Contribute to reducing the burden of chronic diseases by promoting the implementation of policies and practices that have been demonstrated to be successful. The development and sharing of these tested policies and projects across EU countries is the core idea behind this action.

WP7: Fostering the quality of care for people with chronic diseases:

through the implementation of a set of quality criteria and recommendations defined in the previous JA CHRODIS.

Task 3 on mHealth tools: three pilot studies on self-empowerment of patients with help of mobile technology:

- · Cantabrian Health Service CSC in Spain
- · National Center of Public Health and Analyses NCPHA in Bulgaria
- · University Hospital Regensburg UHREG in Germany

¹⁰http://chrodis.eu/about-us/

EMA for different CHRODIS+ T7.3 pilot studies

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understandin

Medical data fo

Learning on Static Data Prediction with few features Data drain Learning on Dynamic Data Learning on sensors Learning on user

inputs

→ Learning from the 'long' users

(almost) all use

 \rightarrow Interpreting the gaps

Closing

T7.3: NPCHA pilot on diabetes \longrightarrow [Unnikrishnan et al., 2020a]

T7.3: UHREG pilot TinnitusTips on tinnitus [Unnikrishnan et al., 2020b]

Questionnaire - many times a day

ID	Item description and value	range
s01	Did you perceive the tinnitus right now?	Y/N
s02	How loud is your tinnitus right now?	0100
s03	How distressed are you by your tinnitus right now?	0100
s04	How well do you hear right now?	0100
s05	How much are you limited by your hearing right now?	0100
s06	How stressed do you feel right now?	0100
s07	How exhausted do you feel right now?	0100
s08	Are you wearing a hearing aid right now?	Y/N

Groups of participants: Y, A, B

Groups Y and A received non-personalized tips from the beginning; group B received the tips only from the middle of the study onwards.

1. Learning from the 'long' users

Co	hort Data
Myra	Spiliopoulou
,	., .,
Medica	al Mining in
the KN	ID Lab
Busin	ess
Under	standing
Termin	i
Medica	I data for
-carrill	9
Learni	ng on Static
Data	
Predic feature	lion with few s
Data d	rain
Dvnan	ng on nic Data
Learni	ng on sensors
Learni	ng on user
inputs	
\rightarrow Le	arning from the
'long	users
→ Pr (almo	ediction for st) all users
\rightarrow Int	erpreting the
gaps	
Closin	q
	-

Analyzing EMA on TrackYourTinnitus

[Probst et al., 2017]

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with fev features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

\rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

- Total assessments: 25,863 Retained: 17,209, after excluding assessments with missing values in any of the target variables and days with less than three assessments.
- 350 participants (253m/94f) with average age 45.4 (over 333, SD=12.1) and median since tinnitus onset 5.4Y (from 0 to 61.8Y)
- Median days per participant 11 (from 1 to 415) with median number of assessments per day 4 (from 3 to 18)

Analyzing EMA on TrackYourTinnitus

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

\rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

- Total assessments: 25,863 Retained: 17,209, after excluding assessments with missing values in any of the target variables and days with less than three assessments.
- 350 participants (253m/94f) with average age 45.4 (over 333, SD=12.1) and median since tinnitus onset 5.4Y (from 0 to 61.8Y)
- Median days per participant 11 (from 1 to 415) with median number of assessments per day 4 (from 3 to 18)

Selection of findings

- "tinnitus was significantly louder in the late evening compared to the afternoon and early evening."
- "stress-level increased from morning to afternoon, decreased from afternoon to evening, and did not differ compared to the night"
- "the effects of time-of-day on tinnitus loudness and tinnitus distress were still significant (i.e., after controlling for the effects of stress)."

Analyzing EMA on TrackYourTinnitus

[Probst et al., 2017]

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors Learning on user

inputs

\rightarrow Learning from the 'long' users

ightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

- Total assessments: 25,863 Retained: 17,209, after excluding assessments with missing values in any of the target variables and days with less than three assessments.
- 350 participants (253m/94f) with average age 45.4 (over 333, SD=12.1) and median since tinnitus onset 5.4Y (from 0 to 61.8Y)
- Median days per participant 11 (from 1 to 415) with median number of assessments per day 4 (from 3 to 18)

Selection of findings

- "tinnitus was significantly louder in the late evening compared to the afternoon and early evening."
- "stress-level increased from morning to afternoon, decreased from afternoon to evening, and did not differ compared to the night"
- "the effects of time-of-day on tinnitus loudness and tinnitus distress were still significant (i.e., after controlling for the effects of stress)."

What about users with missing EMA values and less EMA per day_{30/47}

TrackYourTinnitus data distribution

2. Prediction for (almost) all users

Loorning from
Cohort Data
Mvra Spiliopoulou
Medical Mining in
the KMD Lab
Business
Understanding
Termini
Medical data for
learning
Learning on Static
Data
Prediction with few features
Data drain
Learning on
Data
Learning on sensors
inputs
\rightarrow Learning from the
'long' users
→ Prediction for (almost) all users
\rightarrow Interpreting the
gaps
Closing

Data and model augmentation for distress prediction

[Unnikrishnan et al., 2019]

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini Medical data for

learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Modeling the prediction problem

Given is a set of participants, for the EMA of whom we have the distress values - but only for the first *m* EMA. For each patient *x* and EMA $o_{x,j}$ with j > m, predict the distress value of $o_{x,j}$.

Data and model augmentation for distress prediction

[Unnikrishnan et al., 2019]

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Modeling the prediction problem

Given is a set of participants, for the EMA of whom we have the distress values - but only for the first *m* EMA. For each patient *x* and EMA $o_{x,j}$ with j > m, predict the distress value of $o_{x,j}$.

33/47

Data and model augmentation in two feature spaces

[Unnikrishnan et al., 2019]

Learning from Cohort Data Myra Spiliopoulou 3. kNN-based predictors in D_{EMA} Medical Mining in the KMD Lab Predictor 1 (model augmentation): for each y in the neighbourhood of x (including x), learn a linear regression model m_{γ} ; Medical data for average the parameters $m_{v,slope}$ and $m_{v,intercept}$ into a final model m_x . learning Predictor 2 (data augmentation): place all EMA of x and of its neighbours into a pool; learn a linear regression model for m_x over the pool Learning on sensors Learning on user

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Data and model augmentation in two feature spaces

[Unnikrishnan et al., 2019]

Learning from Cohort Data					
Myra Spiliopoulou	3. kNN-based predictors in D_{EMA}				
Medical Mining in the KMD Lab	Predictor 1 (model augmentation):				
Business Understanding	for each y in the neighbourhood of x (including x), learn a linear				
Termini Medical data for	regression model m_y ;				
learning	average the parameters $m_{y,slope}$ and $m_{y,intercept}$ into a final model m_x .				
Learning on Static Data	 Predictor 2 (data augmentation): place all EMA of <i>x</i> and of its neighbours into a pool; 				
Prediction with few features					
Data drain	learn a linear regression model for m_x over the pool				
Learning on Dynamic Data					
Learning on sensors	$^{\circ}$ C Evaluiting the EMA detect D and the registration data D for learning				
Learning on user inputs	2. Exploiting the EWA dataset D_{EMA} and the registration data D_R for learning				
\rightarrow Learning from the 'long' users	For the kNN neighbourhood of each participant x is built on D_R				
\rightarrow Prediction for (almost) all users	Time series of participants are aligned across the time axis – no gaps				
\rightarrow Interpreting the gaps	are filled in D_{EMA}				

Augmentation with phenotype information

[Unnikrishnan et al., 2019]

Cohort Data							
Myra Spiliopoulou							
Nedical Mining in he KMD Lab	1. Combining	tinnitu	s loudness	and distress lev	els on J	D_R	
Business Inderstanding Termini	Three clusters on loudness and two clusters on distress levels:						
Medical data for learning		1			D ² <i>i</i>		
earning on Static	Tinnitus			Linnitus	innitus Distress		
Prediction with few	Loudness						
features		Low TD				High TD	
earning on		#P	Avg TD		#P	Avg TD	
ynamic Data	Low TL	81	7.4	Avg TL: 28.1	52	15.7	Avg TL: 26.8
Learning on user inputs	Mod TL	83	8.1	Avg TL: 53.0	168	17.0	Avg TL: 54.4
\rightarrow Learning from the 'long' users	High TL	35	9.2	Avg TL: 77.1	97	18.3	Avg TL: 82.2

 \rightarrow Interpreting the gaps

3. Interpreting the gaps

Learning from Cohort Data
Myra Spiliopoulou
Medical Mining in
Rusiness
Understanding
Termini Medical data for
learning
Learning on Static Data
Prediction with few features
Data drain
Learning on Dynamic Data
Learning on sensors
Learning on user inputs
\rightarrow Learning from the 'long' users
→ Prediction for (almost) all users
\rightarrow Interpreting the gaps
Closing

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Adherence as combination of

- * Interaction duration
- ★ Interaction intensity as:
- · Days until first break
- Return after first break (Y/N) within the observation horizon of 30 days

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in

the KMD Lab

Adherence as combination of

- * Interaction duration
- ★ Interaction intensity as:
- · Days until first break
- Return after first break (Y/N) within the observation horizon of 30 days

Materials: EMA of 1252 users

- For time series classification: 852 users, after removing 440 users that had only one EMA
- · For interpretation of interaction intensity: 816 users,
 - after removing users with incomplete time series and/or missing values

Medical data for learning Learning on S

Prediction with fev features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini Medical data f learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors Learning on user

inputs \rightarrow Learning from the

'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Adherence as combination of

- * Interaction duration
- ★ Interaction intensity as:

· Days until first break

 Return after first break (Y/N) within the observation horizon of 30 days

Materials: EMA of 1252 users

- For time series classification: 852 users, after removing 440 users that had only one EMA
- For interpretation of interaction intensity: 816 users, after removing users with incomplete time series and/or missing values

Methods

For time series classification on each EMA item separately:

- 7 Time series classification algorithms with various distance functions
- 6 conventional classification algorithms

For interaction intensity interpretation: classification rule induction

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini Medical data fi learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors Learning on user

inputs \rightarrow Learning from the

 Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Adherence as combination of

- * Interaction duration
- ★ Interaction intensity as:

· Days until first break

 Return after first break (Y/N) within the observation horizon of 30 days

Materials: EMA of 1252 users

- For time series classification: 852 users, after removing 440 users that had only one EMA
- For interpretation of interaction intensity: 816 users, after removing users with incomplete time series and/or missing values

Methods

For time series classification on each EMA item separately:

7 Time series classification algorithms with various distance functions 6 conventional classification algorithms

For interaction intensity interpretation: classification rule induction

Results

Closing: Learning on small mHealth data

Closing: Learning on small mHealth data

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

Huge potential for

- * patient empowerment
- * assistance towards caregivers
- * better diagnostics
- * deeper insights to chronic diseases

The dilemma of time series length:

- · long time series: useful for phenotyping and prediction
- · short time series: little to learn on, very little to predict

Some solutions:

- entity-centric methods that prevent building a global model mainly on the data of very few users
- $\cdot\,$ methods for learning and predicting despite the gaps
- $\cdot\,$ methods for the identification of influence factors

Closing: Learning on small dynamic data

Learning from Cohort Data	
Myra Spiliopoulou	
Medical Mining in the KMD Lab	
Business Understanding	
Termini Medical data for learning	
Learning on Static Data	
Prediction with few features	
Data drain	
Learning on Dynamic Data	
Learning on sensors	
Learning on user inputs → Learning from the	Open issues:
'long' users	ightarrow How to exploit ML-methods designed for large dense datasets
→ Prediction for (almost) all users	\rightarrow Gaps are missing data not at random – how to deal with this?
\rightarrow Interpreting the gaps	\rightarrow Exploration/Exploitation problem – how to learn with even fewer data

THANKS TO:

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

- This work was partially supported by the CHRODIS+ Joint Action on "Implementing good practices for chronic diseases".
- This work is partially supported by the European Union's Horizon 2020 Research and Innovation Programme, Grant Agreement Number 848261.

Medical Mining in the KMD Lab

Business Understanding

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

THANK YOU !

Bibliography I

Learning from Cohort Data Myra Spiliopoulou	[Barnett and Onnela, 2020] Barnett, I. and Onnela, JP. (2020). Inferring mobility measures from gps traces with missing data.
Vedical Mining in the KMD Lab Business Understanding Termini	 Biostatistics, 21(2):e98–e112. [Chapman et al., 2000] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R., et al. (2000). Crisp-dm 1.0: Step-by-step data mining guide. SPSS inc, 9:13.
Medical data for learning Learning on Static Data Prediction with few	[Fahrenberg et al., 2007] Fahrenberg, J., Myrtek, M., Pawlik, K., and Perrez, M. (2007). Ambulatory assessment-monitoring behavior in daily life settings: A behavioral-scientific challenge for psychology. European Journal of Psychological Assessment, 23(4):206.
Data drain Learning on Dynamic Data Learning on sensors	[Fisher et al., 2018] Fisher, A., Rudin, C., and Dominici, F. (2018). All models are wrong but many are useful: Variable importance for black-box, proprietary, or misspecified prediction models, using model class reliance. arXiv preprint arXiv:1801.01489, pages 237–246.
Learning on user inputs → Learning from the 'long' users → Prediction for (almost) all users → Interpreting the	 [Glenn, 2005] Glenn, N. D. (2005). <i>Cohort Analysis.</i> Quantitative Applications in the Social Sciences. SAGE, 2nd edition. [Kumar et al., 2013] Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M., Riley, W. T.,
gaps Closing	Shar, A., Spring, B., Spruijt-Metz, D., et al. (2013). Mobile health technology evaluation: the mHealth evidence workshop. American journal of preventive medicine, 45(2):228–236.

Bibliography II

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understandi

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

 \rightarrow Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

[Langguth et al., 2007] Langguth, B., Goodey, R., Azevedo, A., Bjorne, A., Cacace, A., Crocetti, A., Del Bo, L., De Ridder, D., Diges, I., Elbert, T., et al. (2007). Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus research

Consensus for finnitus patient assessment and treatment outcome measurement: Tinnitus research initiative meeting, regensburg, july 2006. Progress in brain research. 166:525–536.

[Lin et al., 2012] Lin, Q., Zhang, D., Huang, X., Ni, H., and Zhou, X. (2012). Detecting wandering behavior based on gps traces for elders with dementia. In 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), pages 672–677. IEFE.

[Lundberg and Lee, 2017] Lundberg, S. M. and Lee, S.-I. (2017).

A unified approach to interpreting model predictions. In Advances in neural information processing systems, pages 4765–4774.

[Martino-Saltzman et al., 1991] Martino-Saltzman, D., Blasch, B. B., Morris, R. D., and McNeal, L. W. (1991). Travel behavior of nursing home residents perceived as wanderers and nonwanderers. *The Gerontologist*, 31(5):666–672.

[Mohr et al., 2017] Mohr, D. C., Zhang, M., and Schueller, S. M. (2017).

Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annual review of clinical psychology, 13:23–47.

[Niemann et al., 2020a] Niemann, U., Boecking, B., Brueggemann, P., Mazurek, B., and Spiliopoulou, M. (2020a).

Gender-specific differences in patients with chronic tinnitus—baseline characteristics and treatment effects. *Frontiers in Neuroscience*, 14:487.

Bibliography III

Learning from Cohort Data Myra Spiliopoulou

Medical Mining in the KMD Lab

Business Understandi

Termini

Medical data for learning

Learning on Static Data

Prediction with few features

Data drain

Learning on Dynamic Data

Learning on sensors

Learning on user inputs

 \rightarrow Learning from the 'long' users

→ Prediction for (almost) all users

 \rightarrow Interpreting the gaps

Closing

[Niemann et al., 2020b] Niemann, U., Boecking, B., Brueggemann, P., Mebus, W., Mazurek, B., and Spiliopoulou, M. (2020b). Tinnitus-related distress after multimodal treatment can be characterized using a key subset of baseline variables.

PLOS ONE, 15(1):1-18.

[Niemann et al., 2020c] Niemann, U., Brueggemann, P., Boecking, B., Mazurek, B., and Spiliopoulou, M. (2020c).

Development and internal validation of a depression severity prediction model for tinnitus patients based on questionnaire responses and socio-demographics.

Scientific Reports, 10(1):4664.

[Niemann et al., 2020d] Niemann, U., Brueggemann, P., Boecking, B., Rose, M., Spiliopoulou, M., and Mazurek, B. (2020d).

Phenotyping chronic tinnitus patients using self-report questionnaire data: cluster analysis and visual comparison.

Scientific Reports, 10(1):16411.

[Probst et al., 2017] Probst, T., Pryss, R. C., Langguth, B., Rauschecker, J. P., Schobel, J., Reichert, M., Spiliopoulou, M., Schlee, W., and Zimmermann, J. (2017). Does tinnitus depend on time-of-day? an ecological momentary assessment study with the "trackyourtinnitus" application. *Frontiers in Aging Neuroscience*, 9:253.

Bibliography IV

Learning from Coho Myra Spi

Medical the KMD

Business Termini Medical o

learning

Data drair

Learning

Learning

'long' us

 \rightarrow Interp gaps Closing

rt Data	
liopoulou Aining in Lab nding	 [Schleicher et al., 2020] Schleicher, M., Unnikrishnan, V., Neff, P., Simoes, J., Probst, T., Pryss, R., Schlee, W., and Spiliopoulou, M. (2020). Understanding adherence to the recording of ecological momentary assessments on the example of tinnitus monitoring. Scientific Reports. accepted, Dec. 9, 2020.
on Static	[Unnikrishnan et al., 2019] Unnikrishnan, V., Beyer, C., Matuszyk, P., Niemann, U., Pryss, R., Schlee, W., Ntoutsi, E., and Spiliopoulou, M. (2019). Entity-level stream classification: exploiting entity similarity to label the future observations referring to an entity. International Journal of Data Science and Analytics, pages 1–15.
on Data on sensors on user	 [Unnikrishnan et al., 2020a] Unnikrishnan, V., Schleicher, M., Shah, Y., Jamaludeen, N., Pryss, R., Schlee, W., and Spiliopoulou, M. (2020a). Predicting the health condition of mhealth app users with large differences in the amount of recorded observations – where to learn from? In International Conference on Discovery Science. Springer.
ing from the ers ction for all users reting the	 [Unnikrishnan et al., 2020b] Unnikrishnan, V., Schleicher, M., Shah, Y., Jamaludeen, N., Pryss, R., Schobe J., Kraft, R., Schlee, W., and Spiliopoulou, M. (2020b). The effect of non-personalised tips on the continued use of self-monitoring mhealth applications. Brain Sciences, 10(12).

Bibliography V

earning from Cohort Data	
yra Spiliopoulou	
edical Mining in e KMD Lab	
usiness nderstanding	
lermini Aedical data for earning	[Wojtusiak and Nia, 2019] Wojtusiak, J. and Nia, R. M. (2019). Location prediction using gps trackers: Can machine learning help locate the missing people
earning on Static ata	dementia? Internet of Things, page 100035.
Prediction with few eatures	[Zhang et al., 2014] Zhang, Z., Gotz, D., and Perer, A. (2014).
Data drain	Iterative cohort analysis and exploration.
earning on ynamic Data	Information Visualization (Info Vis), pages 1–19.
Learning on sensors	
Learning on user nputs	
\rightarrow Learning from the 'long' users	
\rightarrow Prediction for (almost) all users	
\rightarrow Interpreting the gaps	
losing	