
Probabilistic Active Learning in Datastreams

Daniel Kottke, Georg Krempl, Myra Spiliopoulou

Pseudocode and Efficiency

A naive implementation of the algorithm presented in the paper results in a
computational complexity of O(w log(w)), as sorting is computationally expen-
sive. A common data structure to efficiently store sorted representations are
B-Trees, which need O(logw) to add, find or remove values (see Alg. 1). The
downside of B-Trees is that the rank (position in a sorted list) of elements is
not directly accessible. Hence, we use the threshold θ directly. A new incoming
usefulness value can either leave the threshold as it was or change the threshold
to the next higher value (resp. the next lower one).

As already shown, the threshold index is determined by Eq. 1. Hence,
the threshold index (and the threshold) might change solely by adding new
instances. Therefore, we decrease the threshold during the insertion phase (ll.
23 - 32) if thresidx(|Q|, b)− thresidx(|Q| − 1, b) = 1 (see line 26). If the new
value ui is smaller than the threshold while the queue size is not reached, we
have to increase the threshold by one (see l. 29).

thresidx(|Q|, b) = b|Q| · (1− b)c (1)

After the queue has been filled, we have to distinguish other cases, because
the threshold index is constant now but the deletion may cause threshold shifts.
We distinguish two cases: First, if the value that is removed was the threshold
or less and the new value is greater than the removed one, the threshold moves
right (see line 18). The second case is exactly the opposite: if the removed value
was the threshold or greater and the new value was less than the old one, the
threshold must be moved left (see line 20). For every other case, the threshold
stays constant.

The resulting algorithm runs in O(log(w)) time (per execution step). This
is due to all operations being done in constant time, except for the B-Tree oper-
ations of insertion, deletion and finding min, max, successors and predecessors,
which require O(log(w))).

1

Algorithm 1 Probabilistic Active Learning in Streams (with B-Trees)

1: b ∈ [0, 1];w,wtol ∈ N {Predefined budget, IQF window size, balancing win-
dow size}

2: C ← {} {Generative Classifier}
3: Q← {} {Queue for IQF algorithm}
4: T ← BTree() {B-Tree to store sorted list}
5: θ ← null {Threshold value}
6: i← 1, cacq ← 0 {Instance counter, counter of acquired labels}
7: while Stream delivers new instance xi do
8: {determine spatial usefulness value}
9: p̂← PC(+|xi); n← KFEC(xi)

10: ui ← pgain(p̂, n)

11: {determine BIQF threshold}
12: Q.push(ui)
13: T.insert(ui)

14: if |Q| > w then
15: uold ← Q.pop()
16: T.remove(uold)

17: if uold ≤ θ ∧ ui > uold then
18: θ ← T .getNext(θ)
19: else if uold ≥ θ ∧ ui < uold then
20: θ ← T .getPrev(θ)
21: end if
22: else
23: if |Q| = 1 then
24: θ ← ui
25: else
26: if thresidx(|Q|, b)− thresidx(|Q| − 1, b) = 1 then
27: θ ← T .getNext(θ)
28: end if
29: if ui < θ then
30: θ ← T .getPrev(θ)
31: end if
32: end if
33: end if

34: θbal ← θ − T.getLast()−T.getFirst()
wtol

· (b · (i− cacq))

35: if ui ≥ θbal then
36: C.retrain(xi, getLabel(xi))
37: cacq ← cacq + 1
38: end if
39: i← i+ 1
40: end while

2

