
Noname manuscript No.
(will be inserted by the editor)

Stream-based Semi-supervised Learning for
Recommender Systems

Pawel Matuszyk · Myra Spiliopoulou

the date of receipt and acceptance should be inserted later

Abstract To alleviate the problem of data sparsity inherent to recommender sys-
tems, we propose a semi-supervised framework for stream-based recommendations.
Our framework uses abundant unlabelled information to improve the quality of
recommendations. We extend a state-of-the-art matrix factorization algorithm by
the ability to add new dimensions to the matrix at runtime and implement two
approaches to semi-supervised learning: co-training and self-learning.

We introduce a new evaluation protocol including statistical testing and pa-
rameter optimization. We then evaluate our framework on five real-world datasets
in a stream setting. On all of the datasets our method achieves statistically
significant improvements in the quality of recommendations.

Keywords Recommender Systems · Semi-supervised Learning · Matrix
Factorization · Collaborative Filtering · Stream Mining

1 Introduction

Recommender systems learn users’ preferences and recommend to them a small
selection of only relevant items. To train preference models recommender systems
use users’ feedback on relevance of items. A big class of recommender system
algorithms, the collaborative filtering algorithms, use ratings as users’ feedback
(e.g. 5 stars for high relevance and 1 star for irrelevant items). However, only a
small set of items has ratings. Ratings are the counter-part of labels in the context
of machine learning. Consequently, a great majority of items is not labelled by
users. This results in an extreme data sparsity. Typically, sparsity of a user-item-
rating matrix in recommender systems reaches 99% (only 1% is rated). Especially,
new users and new items suffer from the feedback sparsity.

P. Matuszyk · M. Spiliopoulou
Otto-von-Guericke-University Magdeburg,
Universitätsplatz 2,
D-39106 Magdeburg, Germany
{pawel.matuszyk,myra}@iti.cs.uni-magdeburg.de

This is an author's version of the article.
The final publication is available at Springer via http://dx.doi.org/10.1007/s10994-016-5614-4

2 Pawel Matuszyk and Myra Spiliopoulou

Therefore, it is challenging to provide accurate recommendations, given that
only around 1% of possible label information is available. To tackle this problem
we propose a semi-supervised recommender system that not only uses the labelled
information to train preference models, but also employs the abundant unlabelled
information. This framework is relevant to all existing stream-based collaborative
filtering algorithms (including matrix factorization) as a method of tackling the
sparsity problem.

In our method we follow the co-training-approach. According to this approach,
there are multiple learners running in parallel. A reliable prediction of one of those
learners is used as a label by the remaining learners (for details cf. Section 3). To
prove the improvements achieved by semi-supervised learning (SSL) we compare
our method to an analogous algorithm without SSL. For a further comparison we
also implemented another approach to semi-supervised learning - the self-learning
approach. In this approach a single learner provides reliable predictions to itself
and uses them as labels. However, we show on five real-world datasets that the
improvements achieved by self-learning are not as substantial as in the case of
co-training.

Our method works incrementally on a stream of ratings and incorporates new
user feedback into its preference models. This has an essential advantage of adap-
tivity to changes of preferences and to new information. Furthermore, because our
framework works on stream of ratings, a running recommender system can take
advantage of SSL immediately, as a streaming-based method learns continuously
upon arrival of new information. However, the streaming-based approach poses
additional challenges for our method. Computation in real time is one of them.
Therefore, in our evaluation we also focus on measuring the computation time.

A further challenge is the incremental update of preference models as the
stream goes on. To tackle this challenge we use an incremental version of the
BRISMF algorithm [31]. We extend it so that is able to extend the dimensions
of the user-item-matrix incrementally as new users or items appear in the stream
and call it hereafter extBRISMF. It is a state-of-the-art matrix factorization (MF)
algorithm. While there are numerous different MF algorithms, most of them are
based on the same core idea as the BRISMF algorithm. To make our findings as
generalizable as possible, we chose to extend BRISMF as a representative to many
other algorithms.

In an empirical study on five real-world datasets we show that our SSL frame-
work significantly improves the quality of recommendations. To prove that the
improvement is not due to chance, we introduce a novel evaluation protocol for
stream-based recommender systems that includes statistical tests and a correction
for multiple testing.

Contributions. To summarize, our contributions are as follows:

– a novel framework with semi-supervised learning (SSL) for stream-based rec-
ommender systems with two approaches
– co-training
– self-learning

– a new evaluation protocol with significance testing for stream-based recom-
mender systems

Stream-based SSL for Recommender Systems 3

This work is an extended issue of our conference paper [19]. Compared to
the conference paper we added the self-learning approach, several components of
the framework and a new evaluation protocol. All experiments were re-run using
the new evaluation that also includes statistical testing and analysis of impact of
framework components onto the predictive performance of a recommender system.

Organization. This paper is structured as follows. In the next section we discuss
related work and point out the differences from our approach to existing work.
In Sec. 3 we present our SSL framework. Instances of the framework components
are presented in Sec. 4. In Section 5 we describe our evaluation protocol including
statistical testing and parameter optimization. Experimental results are presented
in Sec. 6. Finally, we conclude our work in Sec. 7 and discuss remaining open
issues.

2 Related Work

Recommender Systems are an active research topic that started with first ap-
proaches to collaborative filtering with work by Goldberg et al. [8] in year 1992.
Already then, the authors recognized the need for filtering the relevant informa-
tion from a plethora of available information and applied their method onto text
documents in a collaborative filtering method called Tapestry.

Sarwar et al. introduced an item-based variant of collaborative filtering (CF)
[25]. Since then, the neighbourhood-based CF has been researched intensively in
numerous publications [5,17,30,4,15]. All those approaches exploit the neighbour-
hood relations between items or users and are, therefore, called neighbourhood-
based CF. They are based on the assumption that users, who rated items similarly
in the past, will also rate future items similarly.

Nowadays, a different class of collaborative filtering algorithms is considered
state-of-the-art. Those are matrix factorization algorithms (MF). The first appli-
cation of MF in recommender systems goes back to year 2002 by Sarwar et al.
[26]. However, only around year 2009 MF algorithms became popular, after they
proved their superior performance and flexibility in the Netflix competition, for
which, especially, work by Yehuda Koren was relevant [14,13,12].

In our work we use the BRISMF algorithm (Biased Regularized Incremen-
tal Simultaneous Matrix Factorization) by Takács et al. [31]. BRISMF and many
other MF algorithms decompose the original user-item-rating matrix R into two
other matrices P and Q. The decomposition is achieved using stochastic gradient
descent (SGD). While R is typically extremely sparse, the latent matrices P and
Q are complete. Predicting missing values in the matrix R is performed by ap-
plying the following formula R̂ = P · Q. Since the matrix R̂ is a product of two
complete matrices, R̂ is complete as well. While this is the core idea of MF algo-
rithms in recommender systems, the BRISMF algorithm uses a more sophisticated
decomposition that also includes regularization and biases (cf. Takács et al. [31]
for details and more background information on matrix factorization).

The BRISMF algorithm has been proposed in two versions. One of them is
batch-based i.e. it uses a batch of training data at once and creates a static model.
Second version (cf. Algorithm 2 in [31]) is an incremental algorithm, i.e. it works on
a stream of ratings and updates its preference model as new ratings appear in the

4 Pawel Matuszyk and Myra Spiliopoulou

stream. This incremental version of BRISMF, however, is not capable of handling
new users and items i.e. new dimensions in the matrix. Since recommender systems
are applied in volatile domains, handling new dimensions is an important feature.
Thus, we extend BRISMF, so that it is capable to extend dimensions of the matrix
(cf. Sec. 4.1).

Incremental setting for recommender systems poses new challenges for evalu-
ation. Since MF algorithms usually start with an initial training phase, splitting
of a dataset into training and test set is not trivial. For this purpose we use
our splitting method from [20,18] (cf. Sec. 5.2). According to this method, the
main mode of an algorithm is the streaming mode. In our previous work we used
the prequential evaluation, as proposed by Gama et al. [7]. However, prequential
evaluation suffers from problems with statistical testing. Since, one data instance
(rating) in a stream is used for both, training and testing, applying a statistical
test onto a evaluation measure is not possible due to violation of independence of
observations. Therefore, we introduce a novel evaluation protocol that doesn’t use
prequential evaluation and allows for hypothesis tests (cf. Sec. 5.4).

Our main contribution is a framework for stream-based semi-supervised learn-
ing (SSL) for recommender systems. SSL has been investigated thoroughly in con-
ventional data mining and machine learning [34], also in the stream setting [6,29].
A comprehensive survey of those techniques can be found in [36]. Those techniques
encompass both co-training [28] and self-learning techniques [24]. Semi-supervised
approaches for regression problems also have been proposed [33]. However, the
problem in recommender systems is inherently different from the conventional
classification or regression. In recommender systems an entire matrix of real or
binary values is predicted. This matrix is extremely sparse (typically, around 99%
of missing values) and there are no further features for a conventional regressor to
train upon. Therefore, the methods from the conventional SSL are not applicable
to recommender systems.

Dedicated SSL methods for recommender systems have been researched far less.
Christakou et al. proposed in 2005 a model-based recommender system using the
k-means algorithm with SSL [2]. Nevertheless, this is not a dedicated recommender
systems method, but clustering applied to the recommendation problem.

To decide which predictions can be used as labels, semi-supervised methods
use reliability measures. A prediction with high estimated reliability can be then
used for training. Hernando et al. proposed such a reliability measure, however,
they did not use it in semi-supervised learning, but presented it to users to indicate
certainty of the recommendation algorithm [11]. Rodrigues et al. [23] and Bosnić et
al. [1] also proposed reliability measures, however, not for recommender systems,
but for classification problems on streams. Nevertheless, we adopted their idea of
reliability based on local sensitivity and adapted it to recommender systems (cf.
Sec. 4.5).

Zhang et al. proposed a SSL method for batch-based recommender systems. In
their approach they assess the reliability of a rating prediction based on frequency
of occurrence of items and users [32]. They assume that popular items and active
users are easier to predict, since there is more data about them. We implemented
this reliability measure, that we call hereafter ”popularity-based reliability mea-
sure”, and we compare it to results of other measures. The method by Zhang et
al. is batch-based. Once the model is trained, it cannot be changed incrementally.

Stream-based SSL for Recommender Systems 5

As a consequence, it is also not adaptive to changes and not responsive to new
users and items. With our stream-based framework we lift those limitations.

Preisach et al. proposed a graph-based tag recommender system that employs
untagged items [22]. In this method the authors used a semi-supervised relational
classification to find relevant tags. Therefore, this method is also not applicable to
the typical rating prediction task in recommender systems.

Zhu et al. proposed a recommender system for web pages that uses conventional
classification with self-learning on natural language data [35]. Also this method
is not applicable to the general collaborative filtering scenario in recommender
systems.

To summarize, there is no semi-supervised approach for stream based recom-
mender systems. Therefore, we propose a novel and flexible framework that imple-
ments such an approach and is applicable to state-of-the-art matrix factorization
methods. This paper extends our work from [19]. In comparison to [19] here, we
add several new instantiations for framework components, self-learning approach
and a new evaluation protocol, according to which we re-evaluated all presented
methods. Since each component in our framework has several possible implemen-
tations (e.g. different types of reliability measures), we additionally analyse the
impact of framework components onto the quality of recommendations to find out
the best implementation of each component (cf. Sec. 6.3).

3 Semi-supervised Framework for Stream Recommenders

In this section we present our semi-supervised framework together with its com-
ponents. We start with an incremental recommendation algorithm in Sec. 3.1 and
then explain how it is applied in two alternative approaches: co-training (cf. Sec.
3.2) and self-learning (cf. Sec. 3.3). In Table 1 we present a summary of notation
and abbreviations used in this work. Figure 1 gives a simplified overview over the
framework components and their interaction. Sections 3.1 and 3.2 come from our
conference paper [19].

3.1 Incremental Recommendation Algorithm

The core of our framework is a recommendation system algorithm. Figure 2 depicts
two modes of a stream-based recommendation algorithm. The entire rectangle in
the figure represents a dataset consisting of ratings. The dataset is split between a
batch mode (blue part) and a stream mode (yellow part). The stream mode is the
main mode of an algorithm, where information about new ratings is incorporated
incrementally into the model, so that it can be used immediately in the next
prediction. Semi-supervised learning takes place in this phase (green bars stand
for unsupervised learning - USL).

Before the stream mode can start, the algorithm performs an initial training
in the batch mode. The batch mode data is, therefore, split again into training
and test set. On the training dataset latent factors are initialized and trained. The
corresponding prediction error is then calculated on the test dataset (second blue
rectangle) and the latent factors are readjusted iteratively. Once the initial training
is finished, the algorithm switches into the streaming mode, where learning and

6 Pawel Matuszyk and Myra Spiliopoulou

Dataset Training Set
Splitter

Batch Mode Initial
Training

Co-Tr
1

Co-Tr
n

Streaming Mode

Training
Stream

Test
Stream

Supervised
Learning

Unsupervised
Learning

Incremental
Update of Co-

Trainers

Predictions
by all Co-
Trainers

Prediction
Assembler

Aggregated
Prediction

Evaluation
Measure

...

Selecting
Unlabelled
Instances

Predictions
by Co-

Trainers

Reliability
Estimation

Reliable Co-
Trainers Provide

Labels to
Unreliable Ones

Incremental
Update

view 1

view
n

Fig. 1: A simplified overview of the framework components.

Fig. 2: Division of a dataset (entire rectangle) into batch (blue part) and stream mode (yellow
part). The stream mode is the main part of an algorithm with incremental learning. Batch
mode is used for initial training.[19]

predicting take place simultaneously. Any incremental MF algorithm is applicable.
We use our extended version of the BRISMF (Biased Regularized Simultaneous
Matrix Factorization) algorithm, etxBRISMF, as described in Section 4.1.

3.2 Stream Co-training Approach

In semi-supervised learning we use two approaches: self-learning and co-training.
The latter was proposed by Zhang et al. for batch recommender systems [32]. In
this section we focus on the co-training approach. According to this approach we
run in parallel multiple stream-based recommendation algorithms that are spe-
cialized on different aspects of a dataset and can teach each other. Due to this
specialization an ensemble of co-trainers can outperform a single model that uses
all available information.

Stream-based SSL for Recommender Systems 7

Notation Meaning

SSL Semi-supervised Learning
SSL3 Semi-supervised Learning with co-training using 3 parallel learners
USL Unsupervised Learning
noSSL Algorithm without SSL (i.e. supervised learning only); it is used as a

comparison baseline
SL Self-Learning
CF Collaborative Filtering
MF Matrix Factorization
BRISMF Biased Regularized Incremental Simultaneous Matrix Factorization (cf.

[31])
IR@10 Incremental Recall at 10 (cf. [3])
Co− Trn The n-th Co-Trainer; one of incremental MF algorithms running in par-

allel
C A set of all Co-Trainers
rx True value of rating x (ground truth)
r̂x A prediction of value of rating x
r̂xCo−Trn A prediction of value of rating x made by the Co-Trainer n
r̂xAgg An aggregate of all predictions of rating x made by all Co-Trainers from

C
r̂ux A prediction of rating x, where no ground truth exists (”u” for unlabelled)
rel(r̂uiCo−Tra) Reliability of prediction r̂ui by Co− Tra
SGD Stochastic Gradient Descent
k Number of latent dimensions in matrix factorization
λ Regularization parameter for matrix factorization
η Learning rate for SGD
−→pu Latent vector of user u
−→qi Latent vector of item i

Table 1: Summary of notation and abbreviations used in this paper.

3.2.1 Initial Training.

The specialization of the algorithms takes place already in the initial training. In
Figure 3 we present a close-up of the batch mode from Figure 2. Here, the initial
training set is divided between N co-trainers from the set C = {Co−Tr1, ..., Co−
TrN}, where N ≥ 2.

Fig. 3: Different co-trainers are trained on different parts of the initial training set. The com-
ponent responsible for splitting the training set is training set splitter.[19]

8 Pawel Matuszyk and Myra Spiliopoulou

The component that decides, how the initial training set is divided between the
co-trainers is called training set splitter (marked in red in Fig. 3; cf. Section
4.2 for instances of this component). Formally, a training set splitter is a func-
tion that relates all co-trainers to subsets of all ratings in the initial training set
RinitialTrain:

f(C,RinitialTrain) : ∀n{(Co− Trn ∈ C)→ RCo−TrninitialTrain} (1)

with n = 1, ..., N and RCo−TrninitialTrain ⊆ RinitialTrain. This function is not a parti-

tioning function, since overlapping between different RCo−TrninitialTrain is allowed and
often beneficial. Implementations of this component are provided in Section 4.2.

3.2.2 Streaming Mode - Supervised and Unsupervised Learning.

After the initial training is finished, all co-trainers switch into the streaming mode.
In this mode a stream of ratings rt is processed incrementally. Figure 4 is a close-
up of the stream mode from Figure 2. It represents a stream of ratings r1, r2,
The yellow part of the figure depicts the supervised learning, whereas the green
part symbolizes the unsupervised learning (cf. next section).

In the supervised learning we distinguish between training and testing i.e.
making recommendations. In the training all co-trainers calculate predictions for
each rating rx in the stream:

∀n : Co− Trn(rx) = r̂xCo−Trn (2)

Please, note that co-trainers are instances of the extBRISMF algorithm (cf.
Sec. 4.1). Consequently, all extBRISMF instances calculate predictions for the
rating in the stream. Once the predictions are made, all co-trainers receive the
true value of the predicted rating. This value is then used to update the models
of the co-trainers incrementally (cf. Algorithm 1).

Fig. 4: A close-up of the stream mode from Figure 2. The yellow part represents the super-
vised learning and the green one unsupervised learning. Predictions made by co-trainers are
aggregated by a prediction assembler.[19]

For the evaluation and for making recommendations, one more step is neces-
sary. Since the co-trainers provide multiple predictions, they need to be aggregated
into one common prediction of the entire system. Because the co-trainers had a
different view of the training data in the batch mode, they can provide different
predictions. In the stream mode all co-trainers receive the same ground truth.

Stream-based SSL for Recommender Systems 9

In order to aggregate all predictions made by co-trainers into one prediction
r̂xAgg we use a component called prediction assembler. The most simple imple-
mentation is arithmetical average (further implementations in Section 4.3). The
function of prediction assembler is as follows:

predictionAssembler(rx, C) = r̂xAgg (3)

In Figure 4 this process is visualized only for the rating r1 due to space con-
straints, however in a real application, it is repeated for all ratings in the stream
with known ground truth (supervised learning). For instances with no ground
truth the procedure is different.

3.2.3 Unsupervised Learning.

USL takes place periodically in the stream. After every m-th rating (m can be set
to 1) our framework executes the following procedure. First, a component called
unlabelled instance selector selects z unlabelled instances (cf. Figure 5). Unla-
belled instances in recommender systems are user-item-pairs that have no ratings.
We indicate those instances with ruz (”u” for unsupervised). The unlabelled in-
stance selector is important, because the number of unsupervised instances is much
larger then the number of supervised ones. Processing all unsupervised instances
is not possible, therefore, with this component we propose several strategies of
instance selection (cf. Section 4.4).

Fig. 5: The procedure of unsupervised learning. User-item-pair without ratings are selected
using an unlabelled instance selector. Predictions and their reliabilities are estimated.
The most reliable predictions are used as labels for the least reliable co-trainers.[19]

Once the unlabelled instances ru1 , ..., r
u
z are selected, co-trainers are used again

to make predictions:

∀n, i : Co− Trn(rui) = r̂uiCo−Trn (4)

where i = 1, ..., z and n = 1, ..., N . After this step we use a reliability measure to
assess in an unsupervised way, how reliable is a prediction made by each co-trainer.
Formally, a reliability measure is the following function:

reliability : (Co− Trn, r̂uiCo−Trn)→ [0; 1] (5)

10 Pawel Matuszyk and Myra Spiliopoulou

This function takes a co-trainer and its prediction as arguments and maps them
into a value range between 0 and 1, where 1 means the maximal and 0 the minimal
reliability. Subsequently, we calculate pairwise differences of all reliabilities of the
predictions for rui :

∆ = |rel(r̂uiCo−Tra)− rel(r̂uiCo−Trb)| (6)

for all a, b = 1, ..., N and a 6= b. All values of ∆ are stored temporarily in a
list, which is then sorted. From this list we extract the top-q highest differences of
reliability i.e. cases, where one co-trainer was very reliable and the second one very
unreliable. In such cases the reliable co-trainer provides a label to the unreliable
co-trainer, who then trains incrementally using the provided label.

3.3 Stream-based Self-learning

Our second approach to semi-supervised learning on streams is self-learning (SL).
According to this approach a single learner provides labels to itself. Those labels are
its own predictions, whose reliabilities were assessed the highest. Our co-training
framework described in the previous section is flexible, therefore it can be used
for self-learning as well. In the following we describe the few changes that are
necessary to adapt it to self-learning.

The first of those changes is in the initial training. While the co-training ap-
proach uses several learners and splits the initial training set among them, there is
only one learner in the self-learning approach. Therefore, the entire initial training
dataset is used by this learner. Consequently, there is no need for a co-training
splitter.

Since there is only one learner, there is also no need for a prediction assembler
that, otherwise, is responsible for aggregating predictions from several learners.

As a consequence of those changes the procedure shown in Fig. 5 changes
as shown in Fig. 6. Unlabelled instances (user-item-pairs without a rating) are
selected by the component called ”unlabelled instance selector”. Subsequently,
the self-learner makes predictions for each of the selected instances ru1 , r

u
2 , ..., r

u
z .

The reliability of this predictions is assessed using a reliability measure (cf. Sec.
4.5). Differently than in co-training, here the difference in reliability of learners,
∆ from Equation 6, cannot be calculated. Therefore, the best label candidates are
the predictions with highest reliability.

A further change affects the unlabelled instance selector. Its function remains
the same, however, the possible implementations of this component are restricted
to the ones working with a single learner. That criterion excludes, for example,
implementations based on disagreement among multiple trainers (cf. Section 4.4
for details).

4 Instantiation of Framework Components

In the previous section we provided definitions of the components of our framework
and explained their interplay. In this section we present several instances for
each of the component. The reliability measure, for example, has many possible
implementations (cf. Sec 4.5). With exception of 4.2.4 - 4.2.6, 4.3.4, 4.4.3, 4.5.4,
sections 4.1 - 4.5 come from our conference paper [19].

Stream-based SSL for Recommender Systems 11

Fig. 6: Adjusted procedure of unsupervised learning from Fig. 5 for the self-learning approach.
In this approach there is only one learner, whose predictions are assessed using a reliability
measure.[19]

4.1 Incremental Recommendation Algorithm - extBRISMF

The core of our framework is a matrix factorization algorithm. We extended the
BRISMF algorithm by Takács et al. [31] by the ability to deal with changing
dimensions of the matrix over time. We named this new variant of the algorithm
extBRISMF for dimensionality extending BRISMF. The original BRISMF keeps
the dimensions of the matrix fixed and does not update latent item factors. In our
algorithm we lift those limitations. This ability is important in SSL, because the
algorithms often encounter items and users not seen before.

For decomposition of the rating matrix R into two latent matrices R ≈ PQ we
use stochastic gradient descent (SGD). P is a matrix of latent user factors with
elements puk, where u is a user and k is a latent dimension. Similarly, Q is a matrix
of latent item factors with elements qik, where i is an item. That results in the
following update formulas for SGD (formulas from [31]):

pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)

qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k)
(7)

where η is a learning rate and λ a regularization parameter that prevents overfit-
ting. A rating prediction can be obtained by multiplying the corresponding item
and user vector from latent matrices r̂ui ≈ pu · qi.

In Alg. 1 we present our extBRISMF. Apart from expanding dimensions of la-
tent matrices, we also introduced a different type of initialization for new user/item
vectors. Next to the initialization of the first column of P and second row of Q
with a fixed constant value, which is typical for BRISMF, we initialize the vectors
as an average vector of the corresponding matrix plus a small random component
instead of just a random vector.

4.2 Training Set Splitter

Training set splitters are used in the co-training approach to divide the initial
training set among co-trainers. In the following we propose several types of training
set splitters (cf. Fig. 2). All of them have one parameter p that controls the degree
of overlapping between the co-trainers.

12 Pawel Matuszyk and Myra Spiliopoulou

Algorithm 1 extBRISMF - trainIncrementally(ru,i)

Input: ru,i, P,Q, η, k, λ
1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: if −→pu = null then
4: −→pu ← getAverageVector(P) + randomVector
5: −→pu1 ← 1
6: P ← P.append(pu)
7: end if
8: if −→qi = null then
9: −→qi ← getAverageVector(Q) + randomVector

10: −→qi2 ← 1
11: Q← Q.append(qi)
12: end if
13: r̂u,i = −→pu · −→qi //predict a rating for ru,i
14: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
15: epoch = 0
16: for all epoch ∈ {1, ..., optimalNumberOfEpochs} do
17: −→pu ← getLatentUserVector(P, u)
18: −→qi ← getLatentItemVector(Q, i)
19: predictionError = ru,i −−→pu · −→qi
20: for all latent dimensions k do
21: if k 6= 1: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
22: if k 6= 2: qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k)
23: end for
24: end for

4.2.1 User Size Splitter.

This splitter discriminates between users of different sizes. Size of a user is defined
as the number of rating she/he has provided. Users are divided into segments
based on their sizes and assigned to co-trainers. In case of only two co-trainers,
for instance, one of them will be trained on so called ”power users” and the other
one on small users. This method is based on a histogram of user sizes. It creates N
segments (N = number of co-trainers) using equal density binning (each segment
has the same number of users). Analogously, we also experiment with an item
size splitter.

4.2.2 Random Splitter.

Ratings are divided between co-trainers randomly. This method serves as a baseline
for comparisons.

4.2.3 Dimensions Preserving Random Splitter.

This splitter also assigns ratings randomly to co-trainers, however, in contrast to
the previous method, it guarantees that all co-trainers have a matrix with same
dimensions. This means that all co-trainers have at least one rating from all users
and items from the initial training set. This might be beneficial for methods not
able to extend the dimensions of their matrices over time.

Stream-based SSL for Recommender Systems 13

4.2.4 User Variance Splitter

As the name suggests, this splitter assigns users to different co-trainers based on
their rating variance. For all users their rating variance is calculated. Using the
histogram method and equal density binning, as in the user size splitter, different
types of users are divided among co-trainers.

The rationale behind this splitter is that users with high variance tend give
differentiated ratings i.e. they rate both items they like and the ones they do not
like. Users with low rating variance tend to give a standard rating to all items. This
splitter utilizes this difference in users’ behaviour and allows different co-trainers
to specialize on separate groups of users.

4.2.5 Item Variance Splitter

Similarly to the user variance splitter, this splitter is also based on rating variance.
However, here the variance is calculated for item ratings. Based on this variance,
ratings of items are divided among co-trainers.

The rationale behind this splitter is different than in the previous one. Items
with a small rating variance are the ones that users agree upon. i.e. all users rate
those items with approximately same value (e.g. 5 stars). Items with a high rating
variance are not agreed upon by users. It means that there is a group of users
rating a given item highly and a different group having an opposite opinion of it.

4.2.6 Average Rating Splitter

The division of ratings is performed by this splitter with respect to average rating
of a user. Users with a high average rating are assigned to a different co-trainer
than the ones with a low average rating. This splitter can be used analogously for
items.

4.3 Prediction Assembler

Prediction assembler aggregates rating predictions from all co-trainers into a single
value. We propose several ways of calculating this aggregation that have the form
of the following formula, but with different weights w(r̂u,i, Co− Trj):

r̂u,iAgg =

∑N
j=0 w(r̂u,i, Co− Trj) · r̂u,iCo−Trj∑N

j=0 w(r̂u,i, Co− Trj)
(8)

Each of the following components defines the weight w(r̂u,i, Co − Trj) in a
different way.

4.3.1 Recall-based Prediction Assembler

Recall-based prediction assembler aggregates predictions of N co-trainers using a
weighted average with weights depending on their past recall values. Accordingly:

w(r̂u,i, Co− Trj) = recall(Co− Trj) (9)

14 Pawel Matuszyk and Myra Spiliopoulou

In the above formula recall is measured globally for each co-trainer. Alterna-
tively, recall can be measured also on user or item level. In this case recall(Co−
Trj) can be substituted with recall(Co− Trj , u) or recall(Co− Trj , i).

4.3.2 RMSE-based Prediction Assembler.

Similarly to the previous method, this prediction assembler uses a weighted aver-
age, however, here the RMSE measures (root mean square error) serve as weights.
Also here, measuring RMSE on user and item levels are possible.

w(r̂u,i, Co− Trj) = RMSE(Co− Trj) (10)

4.3.3 Reliability-weighted Prediction Assembler.

This prediction assembler uses a reliability measure to give more weight to more
reliable co-trainers.

w(r̂u,i, Co− Trj) = rel
r̂u,i

Co−Trj (11)

4.3.4 Maximum Reliability Prediction Assembler.

Differently than in the previous prediction assembler, here only the prediction of
the most reliable co-trainer is used. The aggregation is, therefore, performed using
the following formula:

w(r̂u,i, Co− Trj) =

1, if rel
r̂u,i

Co−Trj = max
k=1,...,N

rel
r̂u,i

Co−Trk

0, otherwise
(12)

4.4 Selector of Unlabelled Instances.

This component is used in unsupervised learning to select unlabelled instances as
candidates for training. Due to a large number of unlabelled instances a method
for selecting them is needed. We propose such methods that as parameter take the
number of instances to be selected.

4.4.1 Latent Disagreement Selector.

For all users each co-trainer stores a latent vector. We denote this vector as
pCo−Trnu . In this method we search for users, where the disagreement of the la-
tent user vectors among the co-trainers is the highest. We define the disagreement
among two co-trainers upon a user u as follows:

disagreement(Co− Tra, Co− Trb, u) = |pCo−Trau − pCo−Trbu | (13)

Stream-based SSL for Recommender Systems 15

This measure can be computed for all known users and all co-trainer pairs. Users
with highest disagreement are then selected as candidates together with a random
selection of items. The motivation behind this method is that the instances with
highest disagreement can contribute the most to the learners. This method can be
applied analogously onto latent item vectors.

4.4.2 Random Selector.

Random combinations of known users and items are generated. This method is
used as a baseline for comparisons.

4.4.3 User-specific Incremental-recall-based Selector

This selector chooses users with best incremental recall achieved by the framework.
For those users it selects random items to generate unlabelled instances (user-item
pairs without a rating). The rationale behind this selector is that users, for whom
the past predictions were accurate, are good candidates for semi-supervised learn-
ing. Predictions for those users should be reliable, assuming that the performance
on the selected instances is consistent with the performance observed so far.

To avoid selecting instances from the user with highest incremental recall only,
we create a list of best user candidates. From this list, the user on the first position
is used for creating twice as many unlabelled instances as the second user, etc. This
procedure is repeated, until the specified number of unlabelled instances is created.

Analogously to this selector, we experiment also with the Item-specific In-
cremental-recall-based Selector. The incremental measure of recall can be sub-
stituted by, e.g. the RMSE measure, creating User-specific and Item-specific
RMSE-based Selector.

4.5 Reliability Measure

Reliability measures are used in our framework to assess the reliability of a rating
prediction in an unsupervised way. Based on prediction reliability, decisions on
which co-trainer teaches which one are made.

4.5.1 Sensitivity-based Reliability Measure.

This is a novel measure of reliability for recommender systems that is based on local
sensitivity of a matrix factorization model. As a user model in matrix factorization
we understand a latent user vector pu. This vector changes over time as new rating
information that occurs in the stream is incorporated incrementally into the model.
The changes of this vector can be captured using the following formula:

∆pu =

k∑
i=0

(pt+1
u,i − p

t
u,i)

2 (14)

where pt+1
u,i and ptu,i are user vectors at different time points. If ∆pu is high, then

it means that the user model is not stable and it changes considerably over time.

16 Pawel Matuszyk and Myra Spiliopoulou

Therefore, predictions made by this model can be trusted less. Similarly to the user
sensitivity we can also measure a global sensitivity of the entire model as a different
variant of this measure. Since ∆pu has a value range [0,∞) a normalization is
needed (cf. last paragraph of this section).

4.5.2 Popularity-based Reliability Measure.

Zhang et al. proposed in [32] a reliability measure based on popularity. This mea-
sure uses the idea that the quality of recommendations increases as the recom-
mender system accumulates more ratings. They used the absolute popularity of
users and items normalized by a fixed term. We implemented this reliability mea-
sure in our framework for comparison, however, with a different normalization
method. Normalisation on streams is different and more challenging (cf. last para-
graph of this section).

4.5.3 Random Reliability Measure.

A random number from the range [0, 1] is generated and used as reliability. This
measure is used as a baseline.

4.5.4 RMSE-based Reliability Measure

Another approach to assess the reliability of a prediction is to assume that the
current performance of a prediction model will be consistent with its past perfor-
mance. For instance, if a co-trainer performed better than others in the past, the
reliability of the current prediction by this co-trainer can also be assumed higher
then the reliability of the remaining co-trainers.

The reliability measure presented here uses the RMSE measure to evaluate the
past performance of co-trainers. Other quality or error measures are also applica-
ble. We also experiment with the incremental-recall-based reliability mea-
sure.

Furthermore, the performance of co-trainers can be measured on a finer level.
For instance, on the level of single users or items. It could be that the past perfor-
mance of a co-trainer is better for a specific user, even though on a global level,
it performs worse than other co-trainers. In our experiments we use the reliability
measures with different abstraction levels, e.g. the RMSE-based reliability measure
on a user level is called ”user-RMSE-based reliability measure”. In our results we
followed this naming convention.

4.5.5 Normalization of Reliability Measures.

As defined in Section 3.2, a reliability measure is a function with value range of
[0; 1]. With many aforementioned reliability measures this is not the case, therefore,
a normalization is necessary. Normalization on a stream, however, is not trivial.
Division by a maximal value is not sufficient, since this value can be exceeded in a
stream and a retrospective re-normalization is not possible. In our framework we
use the following sigmoid function for normalization:

f(reliability) =
1

1 + eα·(reliability−µ)
(15)

Stream-based SSL for Recommender Systems 17

where α controls the slope of the function and µ is the mean of the distribution.
The parameters can be set either manually, or automatically and adaptively in a
self-tuning approach. While the adaptive calculation of µ in a stream is trivial,
the calculation of α requires more effort. For that purpose we store 1000 most
recent arguments of this function and determine their fifth percentile. We define
that the value of the sigmoid function for this percentile should be equal to 0.9.
From that, the optimal value of α can be derived. Note that α also controls if the
function is monotonically increasing or decreasing. Reliability measures using this
adaptive normalization can be recognized in our notation by the prefix ”ST” (for
self-tuning).

5 Evaluation Protocol

We propose a novel evaluation protocol for stream-based recommender systems
that encompasses the following components:

– parameter optimization on a separate dataset
– a method for dataset splitting that allows for hypothesis testing
– an incremental recall measure by Cremonesi et al. [3]
– significance testing

In the following subsections we describe each of the components.

5.1 Parameter Optimization

Our semi-supervised method consists of multiple components, each of which has
several possible instantiations (e.g. a reliability measure can be instantiated as
sensitivity-based, or popularity-based reliability measure, etc.). Additionally, ma-
trix factorization itself requires setting of parameters, such as number of latent
dimensions and the regularization constant λ. To find the optimal setting for the
parameters and components, we perform an initial optimization step.

For that we hold out a small subset of an original dataset and run a grid search
in the parameter space on it. The approximately optimal parameter settings from
the grid search are then used in the final evaluation.

To create the holdout subsets we sample randomly a small percentage of users
from the original dataset. Those percentages are listed in Table 3 for all datasets.
Sampling users instead of ratings has the advantage of not artificially increasing
the sparsity of the data.

Optimization of the parameters on a separate subset prevents favorizing meth-
ods with more parameters. Otherwise, such methods could be tuned more than
methods with fewer parameters to perform best on the test dataset. This proce-
dure ensures that all methods, no matter how many parameters they have, are
run only once on the final evaluation set.

5.2 Dataset Splitting

Splitting a dataset into a training and test set is not trivial in the streaming
scenario. The state-of-the art method for doing it is the prequential evaluation

18 Pawel Matuszyk and Myra Spiliopoulou

proposed by Gama et al. [7]. According to this method, all instances (ratings)
in a stream are first used for testing the performance of a learner and then they
are used for updating the model incrementally. The separation between test and
training set is temporal here (first testing, then training). This method is efficient
in terms of data usage because all instances in the stream are used both for testing
and training.

However, the prequential evaluation has a major disadvantage. Evaluation mea-
sures calculated on a stream at time point t and t + 1 are statistically not inde-
pendent from each other, even if the evaluation measure is not cumulative. This
is due to the fact that the learner at the time point t + 1 already trained on an
instance from time point t.

In consequence, due to the lack of statistical independence, running of hy-
pothesis tests is not possible on an instance level. For instance, let Qt be a quality
measure at time point t. We consider Qt, Qt+1, ..., Qt+n observations for a hypoth-
esis test. The most basic prerequisite for a hypothesis test is the independence of
those observations. In the prequential evaluation this prerequisite is violated and,
therefore, usage of hypothesis tests is prohibited.

To solve this problem, we propose to use two disjoint streams of ratings (one
stream for training and one for evaluation). Because of this separation the observa-
tions Qt, Qt+1, ..., Qt+n for a hypothesis test are independent for non-cumulative
quality measures. In section 5.4 we describe how to use a state-of-the-art evaluation
measure in this setting.

A stream-based matrix factorization, the state-of-the-art in recommender sys-
tems, usually starts with a batch-based initialization phase. Before the algorithm
switches into the streaming-mode, a short batch-training is performed, where the
initial latent matrices are trained in a supervised way. While it is not strictly
necessary to perform this initial phase, it is realistic to assume that in nearly all
applications there is some historical data that can be used for this purpose. By
using it, a bad initial performance at the beginning of the stream can be avoided.

Therefore, this initial phase also has to be considered, when splitting a dataset.
Therefore, our method for splitting datasets incorporates all the following compo-
nents:

– initial training and testing in batch mode
– a training stream for incremental updates of a model
– a disjoint test stream for evaluation and significance testing

A schematic representation of dataset splitting is in Fig. 7. Part 1) in the figure
is used for batch training in the initialization phase. Since this is a supervised
method, it also needs a test set in the batch mode (part 2 in the figure). After the
initialization phase the algorithm switches to the streaming mode, which is the
main mode of this method.

In the streaming mode (part 3 of the dataset) there are two disjoint streams,
one stream for training and one for testing. The results we present in the next
section are calculated on the test stream.

If we consider the parts of the dataset used for training, so far it was part 1)
and a subset of part 3). Part 2) would represent a temporal gap in the training
data. Since many of methods in recommender systems rely heavily on the time
aspect present in the data, such a gap would be problematic. Therefore, we include
part 2) of the dataset into the training stream (represented by the colour gradient

Stream-based SSL for Recommender Systems 19

Fig. 7: Splitting of the dataset between the batch and streaming mode. Separation of training
and test datasets in each of the modes [20].

in the figure). Since this part was used once for batch testing already, we do not
include it into the test stream.

The split ratios between the subsets of the dataset can be adjusted to the need
of an application scenario. For our experiments we use the following ratios: 30%
of a dataset are used for the batch training, 20% for batch testing. Those 20% are
also included into the training stream. The remaining part of the dataset is used
in the streaming mode, 30% of which is used as the test stream.

5.3 Evaluation Measure

As an evaluation measure we use the incremental recall by Cremonesi et al. [3]
(no to be confused with the conventional recall). Incremental recall measures how
often a recommender system is able to find a relevant item among random items.
It is computed as follows: for each relevant item in a stream (based on a relevance
threshold) 1000 further items are drawn randomly. Those 1000 random items are
assumed to be irrelevant and put into one set together with the one relevant item.
The recommender systems is asked to rank the items according to their relevance.
If the relevant item has a ranking position ≤ N , then a hit is counted. The value
of incrementalRecall@N is #hits

|relevant Items| .

Compared to the conventional measures used in similar scenarios (e.g. accuracy,
recall, RMSE, etc.), incremental recall brings several advantages. It considers the
ranking of recommendations and counts only hits for relevant items. Error-based
measures, such as RMSE or MAE, estimate the quality based on predictions of
all ratings. Considering that ca. 99% of items is not relevant to a user, it is not
desirable to incorporate the prediction error on items that do not matter into the
quality measure.

A further advantage is the ability of incremental recall to deal with extremely
skewed distributions. A negative example for this aspect is the accuracy measure.
A classifier that predicts all items to be irrelevant would yield more than 99%
accuracy. A distinction between a good and a bad classifier would be possible
only with very high precision, where the numerical error plays a big role. Because
incremental recall considers only the relevant items, it is free from this problem.

20 Pawel Matuszyk and Myra Spiliopoulou

5.4 Significance Testing

To show that the improvement due to the application of semi-supervised learning
is statistically significant, we incorporate hypothesis tests into our evaluation pro-
tocol. Hypothesis testing on instance level is possible, since we use two separate
streams (one for evaluation and one for testing), which guarantees the indepen-
dence of observations for non-cumulative quality measures.

As a quality measure for the hypothesis testing we use a binary hit count from
the incremental recall at 10 (cf. 5.3). An example for observations of this quality
measure is represented in table 2.

Timepoint (rating)
Algorithm t0 (rua,iw) t1 (rub,ix) t2 (ruc,iy) t3 (rud,iz) ...

SSL 1 0 1 1 ...
noSSL 1 0 0 1 ...

Table 2: An exemplary input to the McNemar’s test. Rows indicate performance of algorithms
over time. 1 means a hit in the sense of incremental recall. Therefore, an algorithm with
significantly more hits is considered better.

The columns of the table indicate a time point in the stream with the corre-
sponding rating (in the parenthesis). Rows represent the performance of algorithms
over time. The performance is the binary representation of a hit. For instance, at
the time point t0 the rating rua,iw occurred in the stream. The SSL algorithm was
able to rank the item iw in top 10 (we measure the incremental recall at 10) among
1000 additional random items. Therefore, for this rating the SSL algorithm scores
a hit (1 in binary notation). At time point t1 none of the algorithm was able to
rank the relevant item in top 10, therefore they both score zero in the table.

In this exemplary table we see that the semi-supervised algorithm (SSL) scored
more hits than the algorithm without semi-supervised learning (noSSL). However,
the evidence in this example is not sufficient to consider any of them superior.
To test if the improvement of the SSL algorithm is statistically significant, we use
the McNemar’s test [21]. This test is used for paired, nominal, dichotomous data,
same as presented here.

For this test, our exemplary input from Table 2 is transformend into a contin-
gency table and odds ratio (OR) is calculated. The null hypothesis of the test is:
H0 : OR = 1 and the alternative hypothesis is H1 : OR > 1. If the null hypoth-
esis is rejected, we can say that the tested algorithm is significantly better than
a noSSL algorithm. All p-values reported in Section 6 result from this test (lower
p-values are better).

In [7] Gama et al. suggested to apply a sliding window or forgetting factors
onto the test statistic in the McNemar test. By doing so, information about the
dynamics of the learning process can be obtained. In this case, the test statistic
reflects mostly the recent time interval and, therefore, allows to test hypotheses
specific to a selected time period.

In this work, however, we are interested in the global effect of SSL, i.e., we
test if there is a significant improvement due to SSL without restricting the time
interval. Therefore, we do not apply sliding windows or forgetting factors and use
the entire test stream for out significance testing.

Stream-based SSL for Recommender Systems 21

Since we perform tests several times (e.g. SSL vs. noSSL and self-learning vs.
noSSL, etc.), there is a risk of alpha error inflation. To account for this fact we
correct the reported p-values for multiple testing. For this purpose we use the
Hommel’s method [27]. All p-values in Section 6 have been corrected using this
method.

6 Experiments

In this section we report the results of empirical evaluation on five real world
datasets (cf. next subsection). To show the improvements by our method we
compare the semi-supervised framework (SSL) to a single learner without semi-
supervised learning (noSSL). In both cases the algorithm used is the extBRISMF
(cf. Sec. 4.1), so that the only difference between the compared algorithms is the
application of SSL.

Within the SSL framework we distinguish between three cases:

– self-learning (SL)
– co-training with two learners (SSL2)
– co-training with three learners (SSL3)

In Section 6.2 we present the results of the approximately best parameter set-
ting from the grid search. The grid search was performed on a cluster running the
(Neuro)Debian operating system [9]. In total we conducted more than 700 exper-
iments. In Section 6.3 we analyse the impact of different instances of framework
components (e.g. which reliability measure performs the best).

6.1 Datasets

In Table 3 we present summary statistics of five real-world dataset that we used
in our evaluation. Those datasets are: MovieLens 1M and 100k1 [10], a sample
of 5000 users from the extended Epinions [16] dataset, a sample of 10 000 users
from the Netflix dataset2 and a sample of the same size from the Flixster dataset3.
From some of the big dataset we took a sample of users because of a huge number
of experiments we run in our grid search.

The last column in the table shows, what percentage of users has been held out
for parameter optimization. Extreme sparsity values in the fifth column show the
amount of unlabelled information in a dataset. Our semi-supervised framework
exploits this abundantly available information.

6.2 Performance of SSL

In this section we present results of the evaluation of our semi-supervised frame-
work. In the evaluation we use the protocol described in Sec. 5. We compare four
methods: co-training with two and three learners (SSL2 and SSL3), self-learning

1 http://www.movielens.org
2 https://www.netflix.com
3 https://www.flixster.com

22 Pawel Matuszyk and Myra Spiliopoulou

Dataset Ratings Users Items Sparsity
Ratio of Users for

Parameter
Optimization

ML1M 1,000,209 6,040 3,706 95.53% 0.05
ML100k 100,000 943 1,682 93.7% 0.1
Flixster (10k users) 569,623 10,000 18,108 99.69% 0.01
Epinions (5k users) 496,222 5000 250,488 99.96% 0.03
Netflix(10k users) 2,143,622 10,000 17,249 98.76% 0.01

Table 3: Dataset statistics; ”Ratio of Users for Parameter Optimization” indicates what per-
centage of users was used for parameter optimization using a grid search. Extreme sparisty
values show the abundance of unlabelled information.

Fig. 8: Incremental Recall@10 over time on the Movielens 1M dataset achieved by different
SSL methods as compared to noSSL (higher values are better). The box plot on the right
visualizes a simplified distribution of incremental recall.

Fig. 9: Incremental Recall@10 over time on the Movielens 100k dataset achieved by different
SSL methods as compared to noSSL (higher values are better).

(SL) and a non SSL algorithm (noSSL). All compared methods use the same ma-
trix factorization algorithm, so that changes in the performance are due to the
application of SSL. Our framework is also capable of using more that 3 co-trainers
in an analogous way. However, the computation time rises with every additional
co-trainer.

Results reported in this section are all calculated using the approximately
optimal parameter and component settings from the grid search performed on
hold-out datasets (cf. Sec. 5). Therefore, for each of the methods we have only one
setting used in the final evaluation.

In Fig. 8 we present a comparison of those methods on the ML1M dataset.
The figure presents incremental recall@10 over time (higher results are better).

Stream-based SSL for Recommender Systems 23

Fig. 10: Incremental Recall@10 over time on the Flixster (10k users) dataset achieved by
different SSL methods as compared to noSSL (higher values are better).

Fig. 11: Incremental Recall@10 over time on the Epinions (5k users) dataset achieved by
different SSL methods as compared to noSSL (higher values are better).

Fig. 12: Incremental Recall@10 over time on the Netflix (10k users) dataset achieved by
different SSL methods as compared to noSSL (higher values are better).

The right part of the figure shows a box plot with a simplified distribution of
incremental recall. The middle bars of the boxes represent the median of recall
values and the hinges stand for the first and third quartile of the distribution.

Fig. 8 shows that SSL3, i.e. co-training with three learners, performed the
best on the Movielens 1M dataset, followed by the SSL2 method. Self-learning
performed worse than noSSL and converged towards the noSSL-level towards the
end of the dataset.

Table 4 shows the corresponding numerical values together with the parameter
and component settings used in this experiment. This table is grouped with respect
to datasets and methods. For instance, for the ML1M dataset and the SSL3 method

24 Pawel Matuszyk and Myra Spiliopoulou

the optimal number of dimensions k was 30, the regularization λ was 0.03 and the
best reliability estimator was the global sensitivity estimator. In the table we do
not present the learning rate parameter η, since its optimal value was 0.003 for
all methods on all datasets. Also the periodicity of unsupervised learning (USL)
m was set to 50 (USL every 50 rating), where z = 100 unlabelled instances were
selected. SSL3 improved the incremental recall by ca. 8 % compared to noSSL on
this dataset. However, the computation time was longer by ca. 18 milliseconds on
average for each data instance.

To show that this improvement is statistically significant and not due to a
chance, we performed the McNemar’s test, as described in Sec. 5.4. In Table 5
we show the resulting p-values corrected for multiple testing using the Hommel’s
method. The columns in the table represent different hypothesis. The second col-
umn, for instance, indicates the p-values from the comparison of SSL3 to noSSL.
For the ML1M dataset this value is extremely low indicating that the improvement
due to SSL3 is highly significant (low p-values are better). Also SSL2 achieves a
significant improvement compared to noSSL. Self-learning was not significantly
better on the ML1M dataset.

While the improvement on ML1M dataset was 8%, on the ML100k dataset it
reached a substantial improvement from 0.0872 (noSSL) to 0.2718 (SSL3). The
comparison for this dataset is presented in Fig. 9. Similarly to ML1M, SSL3 is the
best performing method, followed by SSL2. SL achieved no substantial improve-
ment. Also here, the improvement is at cost of computation time that increased
by 11.5% for SSL3 (cf. Tab. 4). Statistical significance was achieved by both SSL3
and SSL2 (cf. Tab. 5).

On the Flixster dataset (random sample of 10 000 users) the self-learning
method showed the best performance (cf. Fig. 10). SSL3 improved the results to-
wards the end of the dataset and SSL2 preformed lower than noSSL. Consequently,
only SL and SSL3 achieved statistical significance in the McNemar’s test.

On the Epinions dataset (random sample of 5 000 users), which shows the
highest sparsity of all tested datasets, SSL2 performed the best. SSL3 achieved a
similar performance at the end of the data stream, but it was dominated by the
noSSL baseline on parts of the data stream. Self-learning preformed well initially,
but did not achieve a significant improvement over noSSL (cf. Tab. 5). Both SSL2
and SSL3 yielded a significant improvement. However, the computation time for
a data instance rose from 18.3 ms with noSSL to 311.7 ms with SSL3.

On the Netflix dataset (random sample of 10 000 users) improvements of recom-
mendation quality are clear for all SSL methods. This is also reflected by p-values
in Table 5.

To summarise, our SSL framework achieved significant improvements in the
recommendations quality on all datasets. However, the computation time rose, es-
pecially when SSL3 was used. Nevertheless, the average processing time of a single
data instance remained in the range of milliseconds, ensuring that our approach
can be used in real time.

6.3 Impact Analysis of Component Implementations

In our framework we propose multiple components and several possible implemen-
tations for each of them. To find the best implementation for each of the compo-

Stream-based SSL for Recommender Systems 25

Method k λ
Reliability
Estim.

Prediction
Assembler

Unlabelled
Instance
Selector

Training
Set

Splitter

Avg.
IR@10

t̂
(ms)

ML1M
noSSL 30 0.03 - - - - 0.1103 0.2

SL 30 0.03 Random
Reliability-
weighted

Item-
RMSE-
based

- 0.1082 1.2

SSL3 30 0.03
Global

Sensitivity
Reliability-
weighted

User-
Recall-
based

Dim.-
preserving
Random

0.1190 18.1

SSL2 30 0.03
Global

Sensitivity
Global-

Recall-based

Latent
User Dis-
agreement

Dim.-
preserving
Random

0.1160 9.1

ML100k
noSSL 50 0.03 - - - - 0.0872 0.2

SL 50 0.03
ST-User

Popularity
Max.

Reliability

Item-
RMSE-
based

- 0.0884 0.5

SSL3 30 0.01
ST-User

Popularity
Max.

Reliability
Random

Dim.-
preserving
Random

0.2718 2.3

SSL2 30 0.01
ST-User

Popularity
Max.

Reliability

Item-
Recall-
based

User Size
Splitter

0.2016 2.6

Flixter 10k users
noSSL 50 0.03 - - - - 0.2147 0.3

SL 30 0.03
Global

Sensitivity
Global-

Recall-based
Random - 0.2205 1.1

SSL3 30 0.03
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

Dim.-
preserving
Random

0.2144 30.9

SSL2 30 0.03
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

Item Size
Splitter

0.2085 16.2

Epinions 5k users
noSSL 50 0.01 - - - - 0.0018 18.3

SL 30 0.03
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

- 0.0024 41.9

SSL3 30 0.01
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

User Size
Splitter

0.0020 311.7

SSL2 30 0.01
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

User
Variance
Splitter

0.0031 165.8

Netflix 10k users
noSSL 50 0.01 - - - - 0.2337 0.4

SL 50 0.01
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

- 0.2412 3.1

SSL3 30 0.01
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

Dim.-
preserving
Random

0.2409 57.8

SSL2 50 0.01
Global

Sensitivity
Global-

Recall-based

Item-
Recall-
based

Item
Average
Splitter

0.2388 34.2

Table 4: Results of our SSL framework in comparison to the noSSL method on five datasets
together with the corresponding parameter settings. Values of average incremental recall (Avg.
IR@10) better than in noSSL are marked in bold. On all datasets our SSL framework achieved

an improvement, however, at cost of average computation time for a data instance t̂.

26 Pawel Matuszyk and Myra Spiliopoulou

P-values
Dataset SSL3 vs. noSSL SSL2 vs. noSSL SL vs. noSSL

ML1M 4.400e-16 4.400e-16 0.6058
ML100k 4.400e-16 4.400e-16 0.5722
Flixster (10k users) 0.006648 0.992 4.431e-10
Epinions (5k users) 1.9592e-08 6.6e-16 1
Netflix(10k users) 4.400e-16 2.612e-15 4.400e-16

Table 5: P-values from the McNemar’s test, corrected for multiple testing according to the
Hommel’s method (cf. Sec. 5.4). P-values lower than 0.05 are marked in red. They indicate a
statistically significant improvement over the noSSL algorithm (lower values are better).

nents, in this section we present an analysis of impact of the implementations onto
the quality of recommendations (incremental recall).

In Fig. 13 we present the results of this analysis. Each sub-plot represents the
impact analysis of one component. To analyse how much impact an implementa-
tion has, we performed a series of experiments with the approximately optimal
parameter setting from the grid search. Only the implementation of the analysed
component varied between single experiments. Those experiments were run on all
datasets. In the stacked bar plot in Fig. 13 we observe the cumulative performance
of each implementation on all datasets.

Since not all datasets are equally difficult (e.g. incremental recall of 0.009 on
Epinions dataset is a high result, while on other datasets it would considered
low), we normalized the bar hight for each dataset separately. This gives the same
importance to each dataset in the cumulative sum. The labels within the bars,
however, indicate the incremental recall before normalization. This is the reason
why in the first column, for instance, the bar with IR of 0.006 on the Epinions
dataset is higher that 0.058 on the ML1M dataset.

In the first subplot of Fig. 13 we see several instances of the reliability estimator
component together with their cumulative performance on all datasets (cf. colour
legend). The best cumulative performance was reached by the user popularity
reliability estimator with the stream-based normalization (ST for self-tuning). It
is followed by item recall-based estimator, user popularity estimator and user
recall-based estimator with similar results.

The second subplot presents the same analysis for the unlabelled instance selec-
tor component. Here, the latent item disagreement reached the best performance.
However, the random selector achieved a similar result while being computation-
ally less expensive. Therefore, in time-critical application scenarios we recommend
the usage of the random unlabelled instance selector.

The best implementation of the prediction assembler component is based on
maximal reliability, i.e. the prediction with maximal reliability serves as the final
prediction of all co-trainers. Using reliability estimates as weights performed rela-
tively poor (sixth place in the figure). As a method of splitting the training dataset
among co-trainers the item average splitter works the best. It assigns items with
different average ratings to different co-trainers (e.g. good items to one co-trainer,
bad items to the other one), so that they can specialize on each subgroup.

Stream-based SSL for Recommender Systems 27

S
T
U

se
r

P
o
p
u
la

ri
ty

It
e
m

 R
e
ca

ll-
b
a
se

d

U
se

r
P
o
p
u
la

ri
ty

U
se

r
R

e
ca

ll-
b
a
se

d

It
e
m

 P
o
p
u
la

ri
ty

It
e
m

 R
M

S
E
-b

a
se

d

G
lo

b
a
l
S
e
n
si

ti
v
it

y

S
T
G

lo
b
a
l
S
e
n
si

ti
v
it

y

S
T
It

e
m

 P
o
p
u
la

ri
ty

R
a
n
d
o
m

S
T
U

se
r

S
e
n
si

ti
v
it

y

U
se

r
S
e
n
si

ti
v
it

y

U
se

r
R

M
S
E
-b

a
se

d

Implementation

A
v
g
.

In
cr

e
m

e
n
ta

l
R

e
ca

ll

0.272

0.087 0.086 0.086 0.087 0.087 0.086 0.086 0.087 0.085 0.085 0.085 0.085

0.006

0.007 0.007 0.007

0.002 0.002 0.002 0.002 0.001 0.001 0.000 0.000 0.000

0.058
0.117 0.118 0.117

0.117 0.118 0.119 0.120 0.125 0.121 0.119 0.118 0.118

0.214 0.214 0.214 0.214

0.214 0.214 0.214 0.214 0.215 0.214 0.215 0.214 0.214

0.240 0.241 0.241 0.241

0.241 0.240 0.241 0.241 0.241 0.241 0.241 0.241 0.240

Reliability Estimator

La
te

n
t

It
e
m

 D
is

a
g
re

e
m

e
n
t

U
se

r-
R

e
ca

ll-
b
a
se

d

R
a
n
d
o
m

U
se

r-
R

M
S
E
-b

a
se

d

La
te

n
t

U
se

r
D

is
a
g
re

e
m

e
n
t

It
e
m

-R
e
ca

ll-
b
a
se

d

It
e
m

-R
M

S
E
-b

a
se

d

Implementation

A
v
g
.

In
cr

e
m

e
n
ta

l
R

e
ca

ll

0.268 0.262 0.272 0.265 0.260 0.266 0.267

0.009 0.007 0.006 0.006 0.006
0.002 0.000

0.105
0.119 0.118 0.117 0.117

0.112
0.113

0.207 0.213 0.215 0.214 0.211

0.214
0.214

0.226 0.241 0.242 0.241 0.242

0.241
0.241

Unlabelled Instances Selector
M

a
x
.

R
e
lia

b
ili

ty

It
e
m

-R
e
ca

ll-
b
a
se

d

U
se

r-
R

e
ca

ll-
b
a
se

d

U
se

r-
R

M
S
E
-b

a
se

d

G
lo

b
a
l-

R
M

S
E
-b

a
se

d

R
e
lia

b
ili

ty
-w

e
ig

h
te

d

It
e
m

-R
M

S
E
-b

a
se

d

G
lo

b
a
l-

R
e
ca

ll-
b
a
se

d

Implementation

A
v
g
.

In
cr

e
m

e
n
ta

l
R

e
ca

ll

0.272

0.086 0.086 0.086 0.086
0.008

0.086 0.086

0.008

0.008
0.005 0.005 0.004

0.005
0.002 0.002

0.119

0.119

0.119 0.119 0.119
0.119 0.119 0.119

0.214

0.214

0.214 0.214 0.214
0.214 0.215 0.214

0.238

0.241

0.241 0.241 0.241
0.241 0.241 0.241

Prediction Assembler

It
e
m

 A
v
e
ra

g
e
 S

p
lit

te
r

D
im

.-
p
re

se
rv

in
g
 R

a
n
d
o
m

U
se

r
A

v
e
ra

g
e
 S

p
lit

te
r

R
a
n
d
o
m

U
se

r
S
iz

e
 S

p
lit

te
r

U
se

r
V

a
ri

a
n
ce

 S
p
lit

te
r

Implementation

A
v
g
.

In
cr

e
m

e
n
ta

l
R

e
ca

ll

0.272 0.272 0.271 0.260 0.267 0.260

0.002 0.002 0.002 0.002 0.002 0.002

0.123
0.119 0.116 0.115 0.110

0.124

0.208
0.214 0.206 0.206 0.201 0.205

0.232
0.241 0.231 0.231 0.234 0.231

Training Set Splitter

Dataset
ML100k Epinions 5k ML1M Flixter 10k Netflix 10k

Fig. 13: Analysis of impact of component instances onto the quality of recommendations (avg.
incremental recall). We conducted experiments with the optimal parameter setting, where only
one component varied (e.g. reliability estimator in the first subplot). Component instances with
the highest cumulative sum of performance on all dataset are the best (leftmost in all subplots).

7 Conclusions

Recommender systems suffer from an extreme data sparsity. Only few items can
be labelled by users. Therefore, the number of unlabelled items is unproportion-
ally higher than the number of labelled ones. We propose a novel framework for
stream-based semi-supervised learning for recommender systems that exploits this
abundant unlabelled information and alleviates the sparsity problem.

This is the first such framework for stream-based recommender systems. We
implemented two semi-supervised learning (SSL) approaches: self-learning and co-
training and evaluated them in a streaming setting on five real-world datasets. We
showed that our SSL framework achieves statistically significant improvements in
the quality of recommendations. The best performing approach is co-training with
three learners (SSL3). This approach achieved significant improvements compared
to noSSL on all datasets. Co-Training with two learners (SSL2) was significantly
better than noSSL on four out of five datasets. The improvements achieved by the
self-learning method were not consistent on all datasets. Therefore, we recommend
this technique only after prior testing.

28 Pawel Matuszyk and Myra Spiliopoulou

Even though the computation time increased, especially with the SSL3 method,
the resulting computation time for each data instance remained in the range of
milliseconds (maximally 311.7 ms on the Epinions dataset), which proves the ap-
plicability of our framework to real-time applications.

In our experiments we used the BRISMF algorithm by Takács et al. [31], a
state-of-the-art matrix factorization algorithm. We extended the it by the ability to
add dimensions to a rating matrix during runtime, as new users and items appear
in the stream. This is an important feature, especially for volatile applications.

We also introduced a new evaluation protocol for stream-based recommender
systems that incorporates statistical testing, a correction for multiple tests and a
sophisticated method of splitting datasets for an unbiased stream-based evaluation.

A limitation of our method is the computation time. The number of possible
co-trainers is strongly limited. While three co-trainers still showed to be applicable
in real-time, their number cannot be much higher at the current state-of-the-art.
This problem could be alleviated by parallelization and distributed computing.

Also, in our current framework, co-trainers use different views onto the train-
ing data during the batch training phase. In the streaming mode, all co-trainers
receive the same training instances. While it is not a problem for short streams,
in potentially infinite streams the co-trainers can approximate each other. In this
case the advantage of SSL would slowly degrade and the performance of the algo-
rithm would converge towards the performance of a noSSL algorithm. Once this
happens, a retraining of the models with new data can restore this advantage. In
our future work, we plan to extend our framework so that views are also applied
online onto the stream instances. Thus, the potential retraining of models would
not be necessary.

As our framework is modular and can be extended easily, in our future work
we plan to implement further modules such as reliability measures and prediction
assemblers. A further open challenge is the increased computation time in the
co-training approach.

Acknowledgements

The authors would like to thank Daniel Kottke and Dr. Georg Krempl for sug-
gestions regarding self-tuning normalization for streams and evaluation. We also
thank to the Institute of Psychology II at the University of Magdeburg for mak-
ing their computational cluster available for our experiments and to our student,
Florian Schweighöfer, who helped us with implementation of selected training set
splitters.

References

1. Bosnić, Z., Demšar, J., Kešpret, G., Rodrigues, P.P., Gama, J., Kononenko, I.: Enhancing
data stream predictions with reliability estimators and explanation. Engineering Applica-
tions of Artificial Intelligence 34, 178–192 (2014)

2. Christakou, C., Lefakis, L., Vrettos, S., Stafylopatis, A.: A Movie Recommender System
Based on Semi-supervised Clustering. In: CIMCA/IAWTIC, vol. 2, pp. 897–903 (2005)

3. Cremonesi, P., Koren, Y., Turrin, R.: Performance of Recommender Algorithms on Top-n
Recommendation Tasks. RecSys ’10. ACM (2010)

Stream-based SSL for Recommender Systems 29

4. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans-
actions on Information Systems (TOIS) 22(1), 143–177 (2004)

5. Desrosiers, C., Karypis, G.: A Comprehensive Survey of Neighborhood-based Recommen-
dation Methods. In: F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (eds.) Recommender
Systems Handbook, pp. 107–144. Springer US

6. Dyer, K.B., Capo, R., Polikar, R.: COMPOSE: A Semisupervised Learning Framework
for Initially Labeled Nonstationary Streaming Data. IEEE Trans. Neural Netw. Learning
Syst. 25(1), 12–26 (2014)

7. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algo-
rithms. In: KDD. ACM (2009)

8. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using Collaborative Filtering to Weave
an Information Tapestry. Commun. ACM 35(12), 61–70 (1992)

9. Halchenko, Y.O., Hanke, M.: Open is Not Enough. Let’s Take the Next Step: An Inte-
grated, Community-Driven Computing Platform for Neuroscience. Front. Neuroinform.
(2012)

10. Harper, F.M., Konstan, J.A.: The MovieLens Datasets: History and Context. TiiS 5(4),
19 (2016)

11. Hernando, A., Bobadilla, J., Ortega, F., Tejedor, J.: Incorporating reliability measurements
into the predictions of a recommender system. Information Sciences 218, 1–16 (2013)

12. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In: Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 426–434. ACM (2008)

13. Koren, Y.: Collaborative filtering with temporal dynamics. KDD ’09. ACM (2009)
14. Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recommender Sys-

tems. Computer 42(8), 30–37 (2009)
15. Linden, G., Smith, B., York, J.: Amazon.Com Recommendations: Item-to-Item Collabo-

rative Filtering. IEEE Internet Computing 7 (2003)
16. Massa, P., Avesani, P.: Trust-aware bootstrapping of recommender systems. In: ECAI

Workshop on Recommender Systems, pp. 29–33 (2006)
17. Matuszyk, P., Spiliopoulou, M.: Hoeffding-CF: Neighbourhood-Based Recommendations

on Reliably Similar Users. In: V. Dimitrova, T. Kuflik, D. Chin, F. Ricci, P. Dolog,
G.J. Houben (eds.) User Modeling, Adaptation, and Personalization, Lecture Notes in
Computer Science, vol. 8538, pp. 146–157. Springer International Publishing (2014)

18. Matuszyk, P., Spiliopoulou, M.: Selective Forgetting for Incremental Matrix Factorization
in Recommender Systems. In: Disc. Science, LNCS. Springer (2014)

19. Matuszyk, P., Spiliopoulou, M.: Semi-supervised Learning for Stream Recommender Sys-
tems. In: N. Japkowicz, S. Matwin (eds.) Discovery Science, Lecture Notes in Computer
Science, vol. 9356, pp. 131–145. Springer International Publishing (2015)

20. Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A.M., Gama, J.: Forgetting Methods
for Incremental Matrix Factorization in Recommender Systems. In: Proceedings of the
SAC’15 conference. ACM (2015)

21. McNemar, Q.: Note on the Sampling Error of the Difference between Correlated Propor-
tions or Percentages. Psychometrika 12(2), 153–157 (1947)

22. Preisach, C., Marinho, L.B., Schmidt-Thieme, L.: Semi-supervised Tag Recommendation
- Using Untagged Resources to Mitigate Cold-Start Problems. In: M.J. Zaki, J.X. Yu,
B. Ravindran, V. Pudi (eds.) Advances in Knowledge Discovery and Data Mining, Lecture
Notes in Computer Science, vol. 6118, pp. 348–357. Springer (2010)

23. Rodrigues, P.P., Gama, J., Bosnic, Z.: Online Reliability Estimates for Individual Predic-
tions in Data Streams. In: ICDM Workshops, pp. 36–45. IEEE Computer Society (2008)

24. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-Supervised Self-Training of Object
Detection Models. In: WACV/MOTION, pp. 29–36. IEEE Computer Society (2005)

25. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recom-
mendation algorithms. In: Proceedings of the 10th international conference on World Wide
Web, WWW ’01, pp. 285–295. ACM, New York, NY, USA (2001)

26. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental Singular Value Decomposition
Algorithms for Highly Scalable Recommender Systems. In: Fifth International Conference
on Computer and Information Science, pp. 27–28 (2002)

27. Shaffer, J.P.: Multiple Hypothesis Testing. Annual Review of Psychology 46(1), 561–584
(1995)

28. Sindhwani, V., Niyogi, P., Belkin, M.: A Co–Regularized Approach to Semi–supervised
Learning with Multiple Views. In: Proceedings of the ICML Workshop on Learning with
Multiple Views (2005)

30 Pawel Matuszyk and Myra Spiliopoulou

29. de Souza, V.M.A., Silva, D.F., Gama, J., Batista, G.E.A.P.A.: Data Stream Classification
Guided by Clustering on Nonstationary Environments and Extreme Verification Latency.
In: S. Venkatasubramanian, J. Ye (eds.) SDM, pp. 873–881. SIAM (2015)

30. Su, X., Khoshgoftaar, T.: A survey of collaborative filtering techniques. Advances in
Artificial Intelligence 2009, 4 (2009)

31. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable Collaborative Filtering Approaches
for Large Recommender Systems. J. Mach. Learn. Res. 10 (2009)

32. Zhang, M., Tang, J., Zhang, X., Xue, X.: Addressing cold start in recommender systems:
a semi-supervised co-training algorithm. In: SIGIR. ACM (2014)

33. Zhou, Z.H., Li, M.: Semisupervised Regression with Cotraining-Style Algorithms. IEEE
Transactions on Knowledge and Data Engineering 19(11) (2007)

34. Zhou, Z.H., Zhan, D.C., Qiang, Y.: Semi-Supervised Learning with Very Few Labeled
Training Examples. In: AAAI, pp. 675–680. AAAI Press (2007)

35. Zhu, T., Hu, B., Yan, J., Li, X.: Semi-Supervised Learning for Personalized Web Recom-
mender System. Computing and Informatics 29(4), 617–627 (2010)

36. Zhu, X.: Semi-supervised learning literature survey. Tech. Rep. 1530, Computer Sciences,
University of Wisconsin-Madison (2005)

