
Semi-supervised Learning for Stream
Recommender Systems

Pawel Matuszyk and Myra Spiliopoulou

Otto-von-Guericke-University Magdeburg,
Universitätsplatz 2,

D-39106 Magdeburg, Germany
{pawel.matuszyk,myra}@iti.cs.uni-magdeburg.de

Abstract. Recommender systems suffer from an extreme data sparsity
that results from a large number of items and only a limited capability of
users to perceive them. Only a small fraction of items can be rated by a
single user. Consequently, there is plenty of unlabelled information that
can be leveraged by semi-supervised methods. We propose the first semi-
supervised framework for stream recommender systems that can leverage
this information incrementally on a stream of ratings. We design several
novel components, such as a sensitivity-based reliability measure, and
extend a state-of-the-art matrix factorization algorithm by the capability
to extend the dimensions of a matrix incrementally as new users and
items occur in a stream. We show that our framework improves the
quality of recommendations at nearly all time points in a stream.

Keywords: Recommender Systems, Semi-supervised Learning, Matrix
Factorization, Collaborative Filtering, Stream Mining

1 Introduction

Data sparsity is a known problem in recommenders. It is amplified by the in-
troduction of new items and the appearance of new users, on which and whom
little is known. In [11], Zhang et al. proposed to deal with this problem with
semi-supervised learning. In this study, we demonstrate the potential of semi-
supervised learning (SSL) as cure to data sparsity in stream recommenders.
The streaming context poses several challenges on semi-supervised algorithms,
which do not show in the static context: on which data of the stream should
the learning be done, on which data should the learner be tested before being
applied on the ongoing stream, how should an algorithms treat new users and
items? To deal with these challenges, we propose a semi-supervised stream rec-
ommender that deals with data sparsity by deriving predictions from part of
the stream (unlabelled information) and using them for learning. To deal with
new users and items we extend a state-of-the-art matrix factorization algorithm
BRISMF [10] by the ability to deal with growing dimensions of the matrix on
the ongoing stream. Our framework encompasses novel reliability measures, se-
lectors for unlabelled data and further components specified in section 3. To our
knowledge, this is the first such framework for stream recommender systems.

This is an author's copy. The final publication is available at:
http://link.springer.com/chapter/10.1007%2F9783319242828_12

2 Pawel Matuszyk and Myra Spiliopoulou

Sparsity and cold start problems are often tackled by using context or exter-
nal sources of information (e.g. demographics of users, characteristics of items,
etc.). These approaches, however, narrow down the palette of applicable algo-
rithms to the few ones able to use them and it excludes many practitioners, who
do not have the required data. Our framework does not rely on any additional
source of information, but only on the user-item-rating matrix, which makes it
general and applicable to any collaborative filtering algorithm.

In an empirical study on real-world datasets we show that our SSL framework
improves the quality of recommendations at nearly all time points in the stream.

Contributions. To summarize, our contributions are as follows:

– we propose the first SSL framework for stream recommenders includ-
ing novel reliability measures, selectors for unlabelled instances, etc.

– we extend the BRISMF algorithm by the ability to deal with growing di-
mensions of the matrix

– we show that SSL for stream recommenders improves the quality of recom-
mendations

Organization. This paper is structured as follows. In section 2 we discuss
related work. Section 3 gives an overview over our framework and explains the
interplay of its components. The following section describes an instantiation
of the components of the general framework. Evaluation protocol is described
in Section 5. Our results are explained in Section 6. Finally, in section 7, we
conclude our work and discuss open issues.

2 Related Work

Recommender systems have been researched thoroughly in the recent years.
State-of-the-art in the group of collaborative filtering approaches are nowadays
matrix factorization methods. Their predictive performance has been shown
in several publications [6][10][5]. We focus on their incremental version, since
those methods are applicable to streams of ratings. In this work we extend the
BRISMF algorithm (biased regularized incremental simultaneous matrix factor-
ization) proposed by Takács et al. [10]. BRISMF exists in two versions. One of
them was developed for batch processing. Takács et al., however, also developed
an incremental version of it (cf. Algorithm 2 in [10]). In this version the latent
item vectors are fixated and updated as new ratings occur in the stream. Latent
user vectors are updated, however, no new users are added to the matrix. In our
work we lift those limitations of the BRISMF algorithm.

While semi-supervised classification has been investigated thoroughly in the
field of data mining, semi-supervised regression, a discipline that matrix fac-
torization belongs to, is a less researched problem [12]. Recommender system
domain is even more specific due to its idiosyncrasies, such as dealing with large
matrices that are typically up to 99% empty, clod start problem and many more.
Due to those challenges only little work was done on semi-supervised learning

SSL for Stream Recommender Systems 3

in recommender systems. The work by Zhang et al. [11] belongs to the few ones.
They proposed a co-training method for stationary, batch-based recommender
systems. Their approach, however, is not incremental and not appropriate for
streams of ratings and, therefore, would require a frequent retraining of the
models. The framework proposed by us lifts those limitations by incrementally
incorporating new rating information into the models and adapting to changes.

One of the biggest challenges in recommender systems is an extreme sparsity
of data. Many techniques have been developed in order to tackle this problem.
One of the most straightforward techniques is filling of the missing values in the
matrix with default values (e.g. averages). This method, however, is very time
and memory consuming and it lacks personalization. Another approach involves
active learning techniques, where an algorithm chooses what label (rating) to
request from a user in order to maximize a predefined gain for the model [4]. Ac-
tive Learning techniques base on the assumption that a user knows the requested
label and is willing to share it. This is often not the case in real applications.
Semi-supervised learning provides here an important advantage of not having to
relay on users’ input.

3 Semi-supervised Framework for Stream Recommenders

In this section we present our main contribution - a semi-supervised framework
for stream recomemnders with a description of the components and their func-
tion. Our new components are marked in red in the figures below. This section
gives definitions and an overview of how the components are interrelated. An
instantiation and implementation of the components is provided in Section 4.

3.1 Incremental Recommendation Algorithm

The core of our framework is a recommendation system algorithm. Figure 1
depicts two modes of a stream-based recommendation algorithm. The entire
rectangle in the figure represents a dataset consisting of ratings. The dataset
is split between a batch mode (blue part) and a stream mode (yellow part).
The stream mode is the main mode of an algorithm, where information about
new ratings is incorporated incrementally into the model, so that it can be used
immediately in the next prediction. Semi-supervised learning also takes place in
this phase (green bars).

Before the stream mode can start, the algorithm performs an initial training
in the batch mode. The batch mode data is, therefore, split again into training
and test set. On the training dataset latent factors are initialized and trained.
The corresponding prediction error is then calculated on the test dataset (second
blue rectangle) and the latent factors are readjusted iteratively. Once the ini-
tial training is finished, the algorithm switches into the streaming mode, where
learning and prediction take place simultaneously. Our extended version of the
BRISMF algorithm, etxBRISMF, is described in Section 4.1.

4 Pawel Matuszyk and Myra Spiliopoulou

Fig. 1: Division of a dataset (entire rectangle) into batch (blue part) and stream mode
(yellow part). The stream mode is the main part of an algorithm with incre-
mental learning and predictions. Batch mode is used for initial training.

3.2 Stream Co-training Approach

For semi-supervised learning we use the co-training approach.We run in parallel
multiple stream-based recommendation algorithms that are specialized on dif-
ferent aspects of a dataset and can teach each other. Due to this specialization
an ensemble in the co-training approach can outperform a single model that uses
all information.

Initial Training. The specialization of the algorithms takes place already in
the initial training. In Figure 2 we present a close-up of the batch mode from
Figure 1. Here, the initial training set is divided between N co-trainers from the
set C = {Co− Tr1, ..., Co− TrN}, where N ≥ 2.

Fig. 2: Different co-trainers are trained on different parts of the initial training set. The
component responsible for splitting the training set is training set splitter.

The component that decides, how the initial training set is divided between
the co-trainers is called training set splitter (marked in red in Fig. 2; cf.
Section 4.2 for instances of this component). Formally, a training set splitter
function that relates all co-trainers to subsets of all ratings in the initial training
set RinitialTrain:

f(C,RinitialTrain) : ∀n{(Co− Trn ∈ C)→ RCo−TrninitialTrain} (1)

SSL for Stream Recommender Systems 5

Fig. 3: Close-up of the stream mode from Figure 1. The yellow part represents the
supervised learning and the green one unsupervised learning. Predictions made
by co-trainers are aggregated by a prediction assembler.

with n = 1, ..., N and RCo−TrninitialTrain ⊆ RinitialTrain. This function is not a parti-

tioning function, since overlapping between different RCo−TrninitialTrain is allowed and
often beneficial. Implementations of this component are provided in Section 4.2.

Streaming Mode - Supervised and Unsupervised Learning. After the
initial training is finished all co-trainers switch into the streaming mode. In this
mode a stream of ratings rt is processed incrementally. First, a prediction is
made and evaluated, then the models are updated using the new information
according to the prequential evaluation (cf. Section 5).

Figure 3 is a close-up of the stream mode from Figure 1. It represents a
stream of ratings r1, r2, The yellow part of the figure depicts the supervised
learning, whereas the green part symbolizes the unsupervised learning (cf. next
section). For each rating rx in the stream all co-trainers calculate a prediction:

∀n : Co− Trn(rx) = r̂xCo−Trn (2)

In order to aggregate all predictions made by co-trainers into one prediction
r̂xAgg we use a component called prediction assembler. The most simple im-
plementation is arithmetical average (further implementations in Section 4.3).
The function of prediction assembler is as follows:

predictionAssembler(rx, C) = r̂xAgg (3)

In Figure 3 this process is visualized only for the rating r1 due to space
constraints, however in real application, it is repeated for all ratings in the stream
with known ground truth (supervised learning). For instances with no ground
truth the procedure is different.

Unsupervised Learning. USL takes place periodically in the stream. After
every m-th rating (m can be set to 1) our framework executes the following
procedure. First, a component called unlabelled instance selector selects z
unlabelled instances (cf. Figure 4). Unlabelled instances in recommender systems
are user-item-pairs that have no ratings. We indicate those instances with ruz (”u”
for unsupervised). The unlabelled instance selector is important, because the

6 Pawel Matuszyk and Myra Spiliopoulou

Fig. 4: The procedure of unsupervised learning. User-item-pair without ratings are se-
lected using an unlabelled instance selector. Predictions and their reliabil-
ities are estimated. The most reliable predictions are used as labels for the least
reliable co-trainers.

number of unsupervised instances is much larger then the number of supervised
ones. Processing all unsupervised instances is not possible, therefore, with this
component we propose several strategies of instance selection (cf. Section 4.4).

Once the unlabelled instances ru1 , ..., r
u
z are selected, co-trainers are used

again to make predictions:

∀n, i : Co− Trn(rui) = r̂uiCo−Trn (4)

where i = 1, ..., z and n = 1, ..., N . After this step we use a reliability measure
to assess in an unsupervised way, how reliable is a prediction made by each
co-trainer. Formally, a reliability measure is the following function:

reliability : (Co− Trn, r̂uiCo−Trn)→ [0; 1] (5)

This function takes a co-trainer and its prediction as arguments and maps
them into a value range between 0 and 1, where 1 means the maximal and
0 the minimal reliability. Subsequently, we calculate pairwise differences of all
reliabilities of the predictions for rui :

∆ = |rel(r̂uiCo−Tra)− rel(r̂uiCo−Trb)| (6)

for all a, b = 1, ..., N and a 6= b. All values of ∆ are stored temporarily in a
list, which is then sorted. From this list we extract the top-q highest differences
of reliability i.e. cases, where one co-trainer was very reliable and the second one
very unreliable. In such cases the reliable co-trainer provides a label to rui and
the unreliable co-trainer learns incrementally using the provided label.

4 Instantiation of Framework Components

While, in previous section, we provided definitions of our components, here we
present several instances of each component and their implementations.

SSL for Stream Recommender Systems 7

4.1 extBRISMF - Dimensionality Extending BRISMF

The core of our framework is a matrix factorization algorithm. We extended the
BRISMF algorithm by Takács et al. [10] by the ability to deal with chang-
ing dimensions of the matrix over time. We named this new variant of the
algorithm extBRISMF for dimensionality extending BRISMF. The original
BRISMF keeps the dimensions of the matrix fixed and does not update latent
item factors. In our algorithm we lift those limitations. This ability is important
in SSL, because the algorithms often encounter items and users not seen before.

For decomposition of the rating matrix R into two latent matrices R ≈ PQ
we use stochastic gradient descent (SGD). P is a matrix of latent user factors
with elements puk, where u is a user and k is a latent dimension. Similarly, Q
is a matrix of latent item factors with elements qik, where i is an item. That
results in the following update formulas for SGD [10]:

pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)

qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k)
(7)

where η is a learn rate and λ a regularization parameter that prevents overfitting.
A rating prediction can be obtained by multiplying the corresponding item and
user vector from latent matrices r̂ui ≈ pu · qi.

In Alg. 1 we present our extBRISMF. Apart from expanding dimensions
of latent matrices, we also introduced a different type of initialization for new
user/item vectors. We initialize them with an average vector of the corresponding
matrix plus a small random component instead of just a random vector.

4.2 Training Set Splitter

We propose three types of training set splitter (cf. Fig. 1). All of them have one
parameter p that controls the degree of overlapping between the co-trainers.

User Size Splitter. This splitter discriminates between users of different sizes.
Size of a user is defined as the number of rating he/she has provided. Users are
divided into segments based on their sizes and assigned to co-trainers. In case of
only two co-trainers, for instance, one of them will be trained on so called ”power
users” and the other one on small users. This method is based on a histogram of
user sizes. It creates N segments (N = number of co-trainers) using equal density
binning (each segment has the same number of users).

Random Splitter. Ratings are divided between co-trainers randomly. This
method serves as a baseline for comparisons.

Dimensions Preserving Random Splitter. This splitter also assigns rat-
ings randomly to co-trainers, however, in contrast to the previous method, it
guarantees that all co-trainers have a matrix with same dimensions. This means
that all co-trainers have at least one rating from all users and items from the
initial training set. This might be beneficial for methods not able to extend the
dimensions of their matrices over time.

8 Pawel Matuszyk and Myra Spiliopoulou

Algorithm 1 extBRISMF - trainIncrementally(ru,i)

Input: ru,i, P,Q, η, k, λ
1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: if −→pu = null then
4: −→pu ← getAverageVector(P) + randomVector
5: P ← P.append(pu)
6: end if
7: if −→qi = null then
8: −→qi ← getAverageVector(Q) + randomVector
9: Q← Q.append(qi)

10: end if
11: r̂u,i = −→pu · −→qi //predict a rating for ru,i
12: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
13: epoch = 0
14: while epoch < optimalNumberOfEpochs do
15: epoch++; //for all retained ratings
16: −→pu ← getLatentUserVector(P, u)
17: −→qi ← getLatentItemVector(Q, i)
18: predictionError = ru,i −−→pu · −→qi
19: for all latent dimensions k do
20: if k 6= 1: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
21: if k 6= 2: qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k)
22: end for
23: end while

4.3 Prediction Assembler

Prediction assembler aggregates rating predictions from all co-trainers into a
single value. We propose three ways of calculating this aggregation.

Recall-based Prediction Assembler assembles predictions of N co-trainers
using a weighted average with weights depending on their past recall values.

r̂u,iAgg =

∑N
j=0 recall(Co− Trj) · r̂u,iCo−Trj∑N

j=0 recall(Co− Trj)
(8)

In the above formula recall is measured globally for an entire co-trainer. Alterna-
tively, recall can be measured also on user or item level. In this case recall(Co−
Trj) can be substituted with recall(Co− Trj , u) or recall(Co− Trj , i).

RMSE-based Prediction Assembler. Similarly to the previous method, this
prediction assembler uses a weighted average, however, here the RMSE measures
(root mean square error) serve as weights. Also here, measuring RMSE on user
and item levels are possible.

r̂u,iAgg =

∑N
j=0RMSE(Co− Trj) · r̂u,iCo−Trj∑N

j=0RMSE(Co− Trj)
(9)

SSL for Stream Recommender Systems 9

Reliability-weighted Prediction Assembler. This prediction assembler uses
a reliability measure to give more weight to more reliable co-trainers.

r̂u,iAgg =

∑N
j=0 rel

r̂u,i

Co−Trj · r̂u,iCo−Trj∑N
j=0 rel

r̂u,i

Co−Trj

(10)

4.4 Selector of Unlabelled Instances.

This component is used in the unsupervised learning to select unlabelled in-
stances as candidates for training. Due to a large number of unlabelled instances
a methods for selecting them is needed. We propose two such methods that as
parameter take the number of instances to be selected.

Latent Disagreement Selector. For all known users each co-trainer stores a
latent vector that is specific for this co-trainer. We denote this vector as pCo−Trnu .
In this method we search for users, where the disagreement of the latent user
vectors among the co-trainers is the highest. We define the disagreement among
two co-trainers upon a user u as follows:

disagreement(Co− Tra, Co− Trb, u) = |pCo−Trau − pCo−Trbu | (11)

This measure can be computed for all known users and all co-trainer pairs.
Users with highest disagreement are then selected as candidates together with
a random selection of items. The motivation behind this method is that the
instances with highest disagreement can contribute the most to the learners.
This method can be analogously applied onto latent item vectors.

Random Selector. Random combinations of known users and items are gen-
erated. This method is used as a baseline for comparisons.

4.5 Reliability Measure

Reliability measures are used in our framework to assess the reliability of a rating
prediction in an unsupervised way. Based on prediction reliability decisions on
which co-trainer teaches which one are made.

Sensitivity-based Reliability Measure. This is a novel measure of reliability
for recommender systems that is based on local sensitivity of a matrix factoriza-
tion model. As a user model in matrix factorization we understand a latent user
vector pu. This vector changes over time as new rating information that occurs
in the stream is incorporated incrementally into the model. The changes of this
vector can be captured using the following formula:

∆pu =

k∑
i=0

(pt+1
u,i − p

t
u,i)

2 (12)

10 Pawel Matuszyk and Myra Spiliopoulou

where pt+1
u,i and ptu,i are user vectors at different time points. If ∆pu is high,

then it means that the user model is not stable and it changes considerably over
time. Therefore, predictions made by this model can be trusted less. Similarly
to the user sensitivity we can also measure a global sensitivity of the entire
model as a different variant of this measure. Since ∆pu has a value range [0,∞)
a normalization is needed (cf. last paragraph of this section).

Popularity-based Reliability Measure. Zhang et al. proposed in [11] a reli-
ability measure based on popularity. This measure uses the idea that the quality
of recommendations increases as the recommender system accumulates more rat-
ings. They used the absolute popularity of users and items normalized by a fixed
term. We implemented this reliability measure in our framework for compari-
son, however, with a different normalization method. Normalisation on streams
is different and more challenging (cf. last paragraph of this section).

Random Reliability Measure. A random number from the range [0, 1] is
generated and used as reliability. This measure is used as a baseline.

Normalization of Reliability Measures. As defined in Section 3.2, a relia-
bility measure is a function with value range of [0; 1]. With many aforementioned
reliability measures this is not the case, therefore, a normalization is necessary.
Normalization on a stream, however, is not trivial. Division by a maximal value
is not sufficient, since this value can be exceeded in a stream and a retrospective
re-normalization is not possible. In our framework we use the following sigmoid
function for normalization:

f(reliability) =
1

1 + eα·(reliability−µ)
(13)

where α controls the slope of the function and µ is the mean of the distribution.
The parameters can be set either manually, or automatically and adaptively in
a self-tuning approach. While the adaptive calculation of µ in a stream is trivial,
the calculation of α requires more effort. For that purpose we store 1000 most
recent arguments of this function and determine their fifth percentile. We define
that the value of the sigmoid function for this percentile should be equal to 0.9.
From that, the optimal value of α can be derived. Note that α also controls if
the function is monotonically increasing or decreasing.

5 Evaluation Setting

Incremental matrix factorization algorithm works on a stream of ratings, how-
ever, it requires a short initialization phase that also needs to be taken into ac-
count, while evaluating our framework. Therefore, a simple split into a training
and test datasets is not sufficient. Also peculiarities of a stream based evaluation
should be considered. In [8] we developed an evaluation framework suitable for
this type of algorithms. We adopt it also here to measure the performance of our
SSL algorithms and explain it shortly in this section.

SSL for Stream Recommender Systems 11

Fig. 5: Splitting of the dataset between the batch and streaming mode. Separation of
training and test datasets in each of the modes [9].

5.1 Evaluation Protocol

Our evaluation protocol consists of two modes that are presented in Figure 5.
The figure represents an entire dataset and splitting of it into the two aforemen-
tioned modes, as well as into training and test datasets within the modes. The
first mode is a batch mode used for initial training and tuning (blue colour in
Fig. 5). The batch mode itself consists of two further parts. Part 1) of a dataset
is used as initial training set. Part 2) is used for testing of the initial training
and for adjusting parameters of the model. This part is crucial especially for ma-
trix factorization algorithms using stochastic gradient descent. Once the initial
training is finished, the algorithm switches into the stream mode (yellow part).
From this moment on, evaluation and training are performed simultaneously as
proposed by Gama et al. in prequential evaluation [2].

In Figure 5 we can see that part 1) and 3) are user for learning and part 2) for
testing in batch mode. Excluding part 2) from learning would create a temporal
gap in the stream. This gap can be problematic for many incremental methods
that rely on time aspects and are sensitive to ordering of data instances. In order
to avoid this gap, we use part 2) for learning in the streaming mode as well, but
not for testing, since it has been used for batch testing already. Testing in the
stream mode starts in part 3).

In our framework the streaming mode is the main part of the preference
learning, where SSL methods are used. Therefore, our results refer always to the
streaming mode of an algorithm. To investigate the effect of SSL, we compare
results of exrBRISMF with the SSL setting and without it.

5.2 Evaluation Measure - Incremental Recall

In our experiments we use an incremental recall measure proposed by Cremonesi
et al. [1]. In the incremental setting precision can be derived from incremental
recall (cf. [1]) and, therefore, we do not present it. In contrast to purely rating-
based measures, such as RMSE or MAE, the incremental recall measure also
considers ranking of a predicted item. Another problem of RMSE and MAE is
that they weight all predictions uniformly, regardless of relevance of items, i.e.
predictions on all irrelevant items (typically > 99%) influence the error measure
equally strong as predictions on relevant items. In incremental recall the ranking
of relevant items only counts.

12 Pawel Matuszyk and Myra Spiliopoulou

The procedure of measuring incrementallRecall@N is as follows. At each
new rating in a stream the relevance of the corresponding item is determined
using a rating threshold (e.g. rui > 4 is considered relevant). For each relevant
item additional 1000 random irrelevant items, are selected. For all of those items
rating predictions are made and sorted. Finally, the rank p of the relevant item
among the irrelevant ones is determined. If the rank p is lower than N , a hit is
counted. The value of incrementalRecall@N is set to #hits

|Testset| .

6 Experiments

To show the effect of our SSL framework we compared the results of the extBRISMF
algorithm alone (abbreviated hereafter as NoSSL) and extBRISMF with our
SSL framework (abbrv. as SSL). Both, the algorithm and the framework require
setting parameters, such as learn rate η in gradient descent, etc. Therefore, in
order to find approximately best parameter setting we performed a grid search
in the parameter space. The grid search was performed on a cluster running
the (Neuro)Debian operating system [3]. In total we conducted more than 350
experiments. For brevity we present here only the best result achieved by the
SSL and NoSSL method on each dataset.

Datasets. In our experiments we use four real-world datasets from the rec-
ommender systems domain. We stress out that our framework is applicable to
all datasets in form of a user-item-rating matrix unlike similar SSL frameworks
that rely on external sources of information. The datasets we used encompass
Movielens 100k, Movielens 1M1 datasets, as well as random samples of 1000
users of the Netfilx2 and Epinions (extended)[7] datasets. We used sampling on
the large datasets due to a large numbers of experiments in the grid search.
The percentage of labelled data out of all possible user-item-pairs in those data-
sets amounts to values between 0.03% and 6.3%. This shows how much of the
unlabelled information is available in the process of preference learning.

Results. Figure 6 shows the incremental recall@10 over time on the vertical
axis (higher values are better) and the time dimension on the horizontal axis.
The red curves represent the SSL method, whereas the blue ones stand for the
NoSSL method. The dashed lines in colours of both curves represents the median
value of the incremental recall. They correspond to the medians in the boxplots
in the right part of the figures that visualize the distribution of incremental recall
in a simplified way. In all parts of Figure 6 we can see that the SSL method
dominates the NoSSL one at nearly all time points. More precise results with
the corresponding settings are presented in Table 1. The columns 2-5 of the table
represent the components (e.g. a reliability estimator based on user popularity
in the first row). Rows with no components, but with ”NoSSL” stand for the
extBRISMF alone with no SSL used. The sixth column contains the average

1 www.movielens.org
2 www.netflix.com

SSL for Stream Recommender Systems 13

0.12

0.13

0.14

0.15

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Timepoint (Data Instances)

in
cr

em
en

ta
lR

ec
al

l@
10

NoSSL SSL

Method
SSL
NoSSL

(a) Movielens 1M

0.06

0.08

0.10

0.12

0 10000 20000 30000 40000 50000
Timepoint (Data Instances)

in
cr

em
en

ta
lR

ec
al

l@
10

NoSSL SSL

Method
SSL
NoSSL

(b) Movielens 100k

0.15

0.16

0.17

0.18

0.19

0.20

0 30000 60000 90000
Timepoint (Data Instances)

in
cr

em
en

ta
lR

ec
al

l@
10

NoSSL SSL

Method
SSL
NoSSL

(c) Netflix (random sample of 1000 users)

0.002

0.004

0.006

0 20000 40000 60000
Timepoint (Data Instances)

in
cr

em
en

ta
lR

ec
al

l@
10

NoSSL SSL

Method
SSL
NoSSL

(d) Epinions extended (random sample of 1000 users)

Fig. 6: Incremental Recall on four real datasets (higher values are better). Application
of SSL techniques yields an improvement on all datasets at nearly all time points.

14 Pawel Matuszyk and Myra Spiliopoulou

Dataset
Reliability
Estimator

Prediction
Assembler

Unlabelled
Instance
Selector

Training
Set

Splitter

Avg. In-
cremental
Recall@10

Avg. Time
for Instance

(ms)

ML100k
User

Popularity
User

Recall
Latent User

Disagreement
Random 0.101235 2.417228

NoSSL 0.095099 0.138642

ML1M
Sensitivity

Global
User

Recall
Latent User

Disagreement
Dimensions
Preserving

0.136564 10.88977

NoSSL 0.130721 0.250437

Netflix
(1000 users)

Sensitivity
Global

RMSE
Global

Latent Item
Disagreement

Dimensions
Preserving

0.184150 6.888166

NoSSL 0.177380 0.400382

Epinions
(1000 users)

Sensitivity
Global

RMSE
Global

Latent User
Disagreement

User Size 0.003312 131.7290

NoSSL 0.002289 0.979214

Table 1: Average incremental recall@10 and computation time for a single instance.
Our SSL framework is marked in blue.

incremental recall@10 for each of the setting. Best results are marked in bold.
Also here we can recognize that the SSL setting dominated the NoSSL one on
all datasets. From the components there are no clear winners, except for latent
disagreement instance selectors, which performed the best on all datasets. From
reliability measures the sensitivity-based ones were mostly successful.

The last column in Tab. 1 contains the average runtime for a single instance
in milliseconds. We observed that the computation time increased considerably,
when using SSL. Nevertheless, the runtime still stayed in the range of a few
milliseconds, except for the Epinions dataset with 131 ms, which is still feasible
in real-world applications. Remaining settings used in the experiments are the
regularization parameter λ = 0.01, number of latent dimensions k = 40 and learn
rate η = 0.003. The framework used USL every m = 50 ratings, where z = 100
unlabelled instances were selected. Although our framework was developed for an
arbitrary number of co-trainers, in this work we used two of them. Experiments
with a larger number of co-trainers are part of our future work.

7 Conclusions

In this work we proposed a semi-supervised framework for stream recommender
systems based on the co-training approach. To our knowledge, it is the first
such framework that can deal with a stream of ratings and incremental algo-
rithms. Within the framework we proposed several generic components includ-
ing training set splitter, reliability measures, prediction assemblers and selectors
for unlabelled instances. For each of those components we developed several in-
stantiations e.g. sensitivity-based reliability measure, latent disagreement-based
instance selector and many more. Furthermore, we extended the BRISMF algo-
rithm[10] by the ability to extend the dimensions of the matrix incrementally.

In experiments on four real datasets we showed that our SSL framework
outperforms the non-SSL method at nearly all time points. This is,

SSL for Stream Recommender Systems 15

because our framework is able to leverage the unlabelled information, which in
recommender systems is abundant. Using this information allows us alleviate
the problem of sparsity even without using any context information. The im-
provement is, however, at the cost of longer computation time. Nevertheless, the
computation time of a single instance still remains in a range of a few millisec-
onds (normally around 6ms, except for Epinions dataset - ca. 131 ms). Therefore,
this framework applicable in real-world recommenders.

Our immediate next steps are to investigate, how to make this framework
faster by e.g. sharing parts of the matrix among co-trainers and by using efficient
data structures. Furthermore, we plan to experiment with more than two co-
trainers and to implement further instances of the aforementioned components.

Acknowledgements

The authors would like to thank Daniel Kottke and Dr. Georg Krempl for sug-
gestions regarding self-tuning normalization for streams and also the Institute of
Psychology II at the University of Magdeburg for making their computational
cluster available for our experiments.

References

1. P. Cremonesi, Y. Koren, and R. Turrin. Performance of Recommender Algorithms
on Top-n Recommendation Tasks. RecSys ’10. ACM, 2010.

2. J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of stream learning
algorithms. In KDD. ACM, 2009.

3. Y. O. Halchenko and M. Hanke. Open is Not Enough. Let’s Take the Next Step:
An Integrated, Community-Driven Computing Platform for Neuroscience. Front.
Neuroinform., 2012.

4. R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-Thieme. Towards
Optimal Active Learning for Matrix Factorization in Recommender Systems. In
ICTAI, pages 1069–1076. IEEE, 2011.

5. Y. Koren. Collaborative filtering with temporal dynamics. KDD ’09. ACM, 2009.
6. Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recom-

mender Systems. Computer, 42(8):30–37, Aug. 2009.
7. P. Massa and P. Avesani. Trust-aware bootstrapping of recommender systems. In

ECAI Workshop on Recommender Systems, pages 29–33. Citeseer, 2006.
8. P. Matuszyk and M. Spiliopoulou. Selective Forgetting for Incremental Matrix

Factorization in Recommender Systems. In Disc. Science, LNCS. Springer, 2014.
9. P. Matuszyk, J. Vinagre, M. Spiliopoulou, A. M. Jorge, and J. Gama. Forget-

ting Methods for Incremental Matrix Factorization in Recommender Systems. In
Proceedings of the SAC’15 conference. ACM, 2015.

10. G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable Collaborative Filtering
Approaches for Large Recommender Systems. J. Mach. Learn. Res., 10, 2009.

11. M. Zhang, J. Tang, X. Zhang, and X. Xue. Addressing cold start in recommender
systems: a semi-supervised co-training algorithm. In SIGIR. ACM, 2014.

12. Z.-H. Zhou and M. Li. Semisupervised Regression with Cotraining-Style Algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 19(11), 2007.

