
Predicting the Performance of
Collaborative Filtering Algorithms

Pawel Matuszyk
Otto-von-Guericke-University Magdeburg

Universitätsplatz 2
D-39106 Magdeburg, Germany
pawel.matuszyk@ovgu.de

Myra Spiliopoulou
Otto-von-Guericke-University Magdeburg

Universitätsplatz 2
D-39106 Magdeburg, Germany

myra@iti.cs.uni-magdeburg.de

ABSTRACT
Collaborative Filtering algorithms are widely used in rec-
ommendation engines, but their performance varies widely.
How to predict whether collaborative filtering is appropriate
for a specific recommendation environment without running
the algorithm on the dataset, nor designing experiments?
We propose a method that estimates the expected perfor-
mance of CF algorithms by analysing only the dataset statis-
tics. In particular, we introduce measures that quantify the
dataset properties with respect to user co-ratings, and we
show that these measures predict the performance of colla-
borative filtering on the dataset, when trained on a small
number of benchmark datasets.

Categories and Subject Descriptors
Information Systems [Recommender Systems]: Data Min-
ing—Collaborative Filtering

General Terms
Algorithms, Performance, Measurement

Keywords
Recommenders, Recommender Performance Prediction, Colla-
borative Filtering, Matrix Factorization

1. INTRODUCTION
The family of collaborative filtering (CF) algorithms is

widely used in recommender systems, because of their ac-
curacy and ability to cope with sparse data. However, CF
performance varies strongly among different datasets, indi-
cating that CF is appropriate for some but not all data. This
gives raise to the question of deciding whether collaborative
filtering is appropriate for a given dataset, without expos-
ing the users of the recommendation engine to a potentially
inappropriate algorithm and without running expensive sim-
ulations. In this study, we propose a method that predicts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WIMS’14, June 2-4 2014 Thessaloniki, Greece
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2538-7/14/06...$15.00.
http://dx.doi.org/10.1145/2611040.2611054

CF performance on a dataset without running nor simulat-
ing the execution of the algorithm.

Performance prediction for recommenders is challenged
by the power laws governing recommendation environments.
Hence, researchers investigate how well a recommender will
assess the preferences of a given user (cf. [2, 3]), for whom
little may be known. We rather study the dataset as a whole.
Our method encompasses a visual analysis step, in which
we identify properties that indicate whether a CF recom-
mender has enough information for assessing user prefer-
ences. We then quantify these properties and incorporate
the derived descriptors into an estimator that approximates
the expected performance of CF algorithms on this dataset.
In our study, we distinguish between neighborhood-based
CF and non-negative matrix factorization, and we cover
both types of CF recommendation.

The paper is structured as follows. In the next section
we present related work. In section 3, we explain the vi-
sual analysis method and derive two properties a dataset
should reveal for the CF algorithms to provide high-quality
recommendations. In section 4, we present the measures
that reflect and quantify those properties and show how we
use them for prediction. In section 5 we report on our ex-
periments on several datasets. In section 6 we conclude our
work and discuss remaining open issues.

2. RELATED WORK
In [2, 3], Bellogin et al. investigate the prediction of the

performance of recommender systems. In [2], they introduce
a novel weighting scheme on the ”clarity” of users. They
show that this weighting scheme allows them to find good
neighbours for a user and thus reduce prediction error, es-
pecially for small neighbourhoods. In [3] Bellogin et al. ex-
tended [2] with the concept of ”query clarity” from the field
of information retrieval. However, these methods are de-
signed to improve the performance of a running system by
predicting the error for a given user. Our goal is rather to
predict the error of a recommender on an entire dataset prior
to implementing and using it on operative data.

Griffith and O’Riordan [6] build regression trees on fea-
tures derived from user data, including average rating, num-
ber of neighbours, average similarity to the top 30 neigh-
bours, importance of a user etc. They predict the Mean
Average Error (MAE) values using a decision rule derived
from the regression tree. Then, they compare the MAE pre-
dicted by the rule to the MAE values computed by a collabo-
rative filtering approach. This analysis delivers interesting
insights on which user features are informative. However,

© Matuszyk 2014. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 4th International Conference on Web Intelligence, Mining
and Semantics (WIMS14) , http://dx.doi.org/10.1145/2611040.2611054

the computation of those features requires finding the neigh-
bourhood of an active user. Therefore, the method is rather
appropriate for predicting the performance of single users.
A prediction for an entire dataset would be computationally
very expensive, since it would require enumerating all users
and aggregating the findings on them in a reasonable way.

Ekstrand and Riedl predict the performance of single rec-
ommendation algorithms to improve ensembles of methods
[4]. They show that different types of recommenders make
different errors and therefore, using ensembles can lead to
overall performance improvement. To predict the behavior
of the different recommender types, they introduce basic pre-
dictors, such as count, mean and variance of ratings. They
show that these statistics correlate with performance, but
stress that further features are needed to explain when a
recommender works well [4]. In our work we create more
sophisticated features and build a regression model that de-
scribes recommender performance well.

Some studies identify dataset descriptors that describe or
predict interesting dataset properties. Niall and Rickard in-
vestigate ways of measuring sparsity and define six proper-
ties that a sparsity measure should have [7]; they conclude
that only the Gini Index exhibits all of them. A further spar-
sity measure, especially designed for CF, is proposed in [1].
In our work, we also investigate sparsity; we use entropy-
inspired measures [9] and apply them on user co-ratings.

3. VISUAL ANALYSIS
Our approach is designed for web platforms where users

rate items. To judge the eligibility of CF methods, our ap-
proach only requires a dataset D with the users’ ratings over
a time horizon. It is possible to use as D the complete set of
ratings recorded over a time period, but it is also possible to
choose a random sample over the set of users, so that pro-
cessing overhead is reduced. Sampling over the set of users
is essential: if we sample directly over the set of ratings, it
is likely that we mostly select users from the short head;
these users are not representative of the dataset, hence they
should not be used to estimate the eligibility of CF methods.

Once D is constructed, as next step we map the distribu-
tion of user ratings into the set of equivalence classes; we
then inspect the co-rating structure of D using heatmaps.
Through the juxtaposition of the co-ratings structure of dif-
ferent datasets, we demonstrate that the heatmap of co-
ratings gives insights on CF eligibility, and we point to two
properties that characterize datasets for which CF methods
are appropriate. We quantify these properties in the next
section and use them in our CF-eligibility estimator.

3.1 User Equivalence Classes and Co-Ratings
For our visual analysis of a set of ratings D, we extract the

set of users U who contributed the ratings, and partition U
into equivalence classes with respect to the number of ratings
a user has provided. In particular, let u ∈ U be a user and
let R(u) ⊆ D be the ratings provided by u. The ”equivalence
class” of u, denoted as [u], is defined as:

[u] = {ux ∈ U ||R(ux)| = |R(u)|} (1)

where |X| denotes the cardinality of an arbitrary set X.
Hence, all users who gave the same number of ratings belong
to the same equivalence class. We denote each equivalence
class with the number of ratings of its users, i.e. the class
[u8] encompasses all users who made exactly 8 ratings.

Using the notion of equivalence classes, we compute a co-
rating matrix for D. In particular, for each pair of users
(ux, uy), we compute the number of ratings they have in
common. Then, to each pair of equivalence classes ([ux], [uy])
we set as class co-ratings value the average number of co-
ratings among the users in these classes.

After computing the co-ratings matrix of D, we visual-
ize the heatmap of the co-ratings matrix. As shown in the
example heatmap of Figure 1(a), classes are sorted by num-
ber of ratings. The darker the dot corresponding to a pair of
classes is, the higher is the class co-ratings value for this pair.
Since users with the same number of ratings are grouped into
the same equivalence class, the class co-ratings values can
provide insights on how sparse the co-ratings matrix is.

We propose to accompany the co-ratings matrix of D with
the histogram of the cardinalities of the equivalence classes,
as shown in the example Figure 1(b). Such a histogram de-
livers a more accurate interpretation of the heatmap, since it
highlights the user classes of high importance, i.e. the highly
populated ones. We elaborate on the insights gained by in-
specting heatmaps and their corresponding class cardinality
histograms on two example datasets.

3.2 Juxtaposing the Heatmaps of Datasets
As a proof of concept, we depict the co-rating matrices

and class cardinality histograms for two of the datasets we
studied, MovieLens (Figure 1) and Epinions (Figure 2), us-
ing a a sample of 1000 users per dataset. The two co-rating
matrices on Figures 1(a) and 2(a) are remarkably different.

In particular, the co-ratings heatmap of MovieLens on
Figure 1(a) has many dark regions, which implies that in
MovieLens there is a high number of co-ratings for many
pairs of equivalence classes. The histogram (Fig. 1(b)) re-
veals a skewed distribution, as is typical for recommender
systems, but it shows also that most of the users have con-
tributed many ratings. In contrast, the heatmap of the
Epinions dataset (Figure 2(a)) is almost empty, implying
that there are almost no co-ratings. This is supported also
by the corresponding histogram (Figure 2(b)), which reveals
that most of the users have very few ratings.

Figures 1 and 2 show that the two datasets MovieLens and
Epinions, which are often used as benchmark datasets, are
very different with respect to co-ratings distribution. Since
CF algorithms assess the similarity of two users on the basis
of the items they have both rated, we expect that CF algo-
rithms will perform less well on the Epinions dataset than
on the MovieLens dataset. However, to decide whether CF
methods are appropriate for an arbitrary dataset D, it is
preferable to not only rely on the visual juxtaposition of D
to MovieLens or Epinions. In the next section, we derive
two properties that D should satisfy, so that CF algorithms
are successful on it. We then derive measures from these
properties and use them for CF-eligiblity estimation.

4. CF-PERFORMANCE ESTIMATION
CF algorithms rely on the co-ratings of users, so, intu-

itively, a co-ratings graph or matrix with Low Sparsity is
important for high-quality recommendations. However, low
sparsity of a dataset alone does not ensure that a high num-
ber of co-ratings can be found for all users. The distribution
of co-ratings can be a skewed distribution i.e. some users,
namely those who have rated a lot of items, are likely to be
matched to other users as opposed to users with few ratings.

(a) Heatmap representing the co-rating structure of the
MovieLens 1M dataset. Dark areas represent user classes with
many co-ratings and white areas mean no co-ratings at all.

(b) Histogram of cardinalities of user classes. A typically for
recommenders skewed distribution. The histogram allows to
determine the biggest user classes.

Figure 1: Visualization of the Movie Lens 1M dataset.

(a) The Co-rating heatmap of the Epinions dataset shows an
extreme sparsity (the heatmap is nearly blank). Lower per-
formance of CF algorithms can be expected.

(b) Histogram of the Epinions dataset reveals an even more
skewed distribution than MovieLens. The user classes with
only few ratings are the biggest ones.

Figure 2: Visualization of the Epinions dataset.

Hence, it is reasonable to expect a better CF performance
when the number of co-ratings of users follows a Uniform
Distribution. We quantify the properties of Low Sparsity
and Uniform Distribution and use them to learn an estima-
tor of CF performance. This estimator can be applied on
the dataset D without running CF algorithms on it.

4.1 Quantifying the Sparsity of Co-Ratings
To model the sparsity of a co-ratings matrix we use the

following measure proposed in [1] (notation adjusted):

sparsity(D) = 1−
∑

u∈U |R(u)|
|U | · |Items| (2)

where, as before, U is the set of users recorded in D, R(u) is
the set of ratings of user u ∈ U and Items is the set of items
of the site, independently of whether they are referenced in
D or not. The product of |U | and |Items| is the number of all
possible ratings, under the assumption that a user can rate
an item only once. The formula reflects the ratio of ratings
that are ”missing” out of the set of all possible ratings. It
takes the value of one when no ratings are available, and the
value of zero when no values are missing (complete matrix).

4.2 Quantifying the Distribution of Co-Ratings
To quantify how uniform is the distribution of co-ratings

among user classes we use measures from the field of infor-
mation theory. Let U = {[u]|u ∈ U} be the set of equiva-
lence classes over the set of users U and MX×Y the co-rating
matrix as visualized e.g. in Figure 1(a) using a heatmap.
cor([ux], [uy]) is then defined as the (x,y)-th entry of the
matrix expressing the average number of co-ratings between
classes [ux] and [uy], where x ∈ {1, ..., X} and y ∈ {1, ..., Y }.
(cf. dimensions of MX×Y). We need a measure that reaches
its maximum when all equivalence classes are equiprobable.
Possible measures are entropy ([9], notation adjusted):

E(D) = −
∑
x,y

cor([ux], [uy])∑
x,y cor([ux], [uy])

log2

(
cor([ux], [uy])∑
x,y cor([ux], [uy])

)
(3)

and Gini index (from [9], notation adjusted):

Gini(D) = 1−
∑
x,y

(
cor([ux], [uy])∑
x,y cor([ux], [uy])

)2 (4)

Those measures are computed upon average number of co-
ratings of user classes, where a uniform distribution is ideal
i.e. all classes have the same number of co-ratings.

4.3 Building a CF-Performance Estimator
To predict the performance of CF on dataset D, we use

supervised learning. In particular, we run CF algorithms
on benchmark datasets: for each dataset X, we derive an
instance that contains the sparsity(X) (cf. Eq. 2), the
Entropy(X) (Eq. 3) and the Gini(X) (Eq. 4) value for the
ratings in X, as well as the RMSE value for each CF algo-
rithm on X (target variable). Thus, for each CF algorithm
A under study, we derive one training set, from which we
can learn a predictor ξA. Then, the expected RMSE value
of A for D is the predictor’s output ξA(D).

Albeit it is inherently attractive to predict the perfor-
mance of a CF algorithm through a learner, it is even more
appealing to study how the variables of the training set pre-
dict the CF performance. To this purpose, we use Pearson

correlation coefficient as measure: if there is a strong lin-
ear correlation between the input variables and the target
variable, then linear regression can be used to express this
correlation as a formula (cf. Section 5.3 for training ξA(D)).

5. EXPERIMENTS
We investigate how well our predictor with the proposed

measures predicts the performance of different CF algorithms.
As proof of concept we consider two CF algorithms, User-
Based Collaborative Filtering with cosine similarity (UB-
CF) and SVD++ [8] (denoted as MF for ”Matrix Factoriza-
tion” hereafter), as implemented in [5]. Our training dataset
consists of four (!) instances, one per dataset with ratings.

We first describe how we build the training dataset: in
5.1.1, we show how we tune UB-CF and MF, since fair eval-
uation requires that each algorithm runs with the best pa-
rameter setting; in 5.1.2, we elaborate on the values of our
measures for the four datasets. Then, in subsection 5.2, we
discuss the values of the Pearson coefficients, identifying lin-
ear correlations. Accordingly, we perform linear regression
(cf. 5.3) to come up with a formula that returns the expected
performance of UB-CF and MF on an unknown dataset.

5.1 Building the Training Dataset
We use four benchmark datasets: MovieLens1M and Epin-

ions (also described in subsection 3.2), Netflix and Flixter.
Since it is essential to create comparable training instances,
and since the benchmark datasets differ in size, we sam-
pled 1000 users from each one randomly. As explained at
the beginning of Section 3, random user sampling approxi-
mately retains the original distribution of equivalence classes
of users with respect to their sizes, while random sampling
of ratings would distort the ratings distribution and increase
the sparsity of the co-ratings matrix.

The ratings distributions in the four benchmark datasets
vary strongly, as can be seen in the juxtaposition of Movie-
Lens1M and Epinions in subsection 3.2. Selecting dissimilar
datasets is essential, because the training instances must be
representative of the variety of recommender platforms.

5.1.1 CF-Algorithm Tuning with Grid Search
Since each benchmark dataset has its idiosyncrasies, the

optimal setting of parameters for the CF-algorithms UB-
CF and MF vary from one to the other. For our training
instances, we use the optimal parameter settings per algo-
rithm and dataset. To tune the parameters optimally, we
perform a grid search over the parameter space. The grid
search does not guarantee finding an optimal solution, but
provides a good approximation of optimal settings. To in-
crease the stability of the results we performed a 5-fold cross
validation on each run within the grid search.

Figure 3 depicts the RMSE values achieved by UB-CF and
MF on each dataset, when using the best parameter settings
per dataset. It is apparent that MF, i.e. SVD++, performs
consistently better on all datasets.

5.1.2 Creating the Training Instances
We compute the sparsity(X) (cf. Eq. 2), Entropy(X)

(Eq. 3) and Gini(X) (Eq. 4) for each of the four bench-
mark datasets, and we associate this tuple with the RMSE
value achieved by UB-CF, respectively MF (cf. values on
Figure 3). Thus, we produce one training dataset with four
instances for each of our two selected CF algorithms.

0.0

0.5

1.0

Epinions Flixter ML1M Netflix
Dataset

R
M

SE Method
MF
UB−CF

Results of the Grid Search

Figure 3: RMSE values of UB-CF and MF on the
four benchmark datasets, as achieved by the best pa-
rameter settings found with grid search; lower values
are better, and MF outperforms UB-CF in all cases.

5.2 Correlation of Measure Values to the Per-
formance of the Selected CF Algorithms

To decide whether we can fit a linear regression model
on our data, we first check for correlations between the
three measures, corresponding to three variables (sparsity,
entropy, gini) in our training dataset, and the target vari-
able RMSE. We do so for both algorithms, UB-CF and MF,
so there are two correlation coefficients, one per algorithm.
The results are presented in Table 1. Both negative and pos-
itive correlations are relevant, therefore, we have to consider
only absolute values of the correlation coefficient.

The Pearson’s product moment correlation coefficients,
presented in the second and third column of Table 1, show
that there is a strong correlation between our measures and
the results achieved by the CF algorithms, whereby Gini and
Entropy reveal a stronger linear correlation than Sparsity.

In the last two rows of Table 1, we show the correlation be-
tween combinations of our measures and the target variable.
Best absolute correlation (0.99693) is reached by a multi-
plicative combination of sparsity and Gini Index, namely
(1 − Gini) · Sparsity, which shows a stronger correlation
with the RMSE value of UB-CF than any of its factors.

The computed coefficients are based on a training set with
only four instances. We therefore perform a significance test-
ing, shown in the last three columns of Table 1: the last two
columns depict the p-values and the fourth column the re-
spective alternative hypothesis 1. Except for the correlation
coefficients of sparsity, all remaining coefficients are statisti-
cally significant at significance level 0.03 and lower (marked
in red), which proves that our measures describe the perfor-
mance of the two representative CF-algorithms and can be
used for performance prediction.

5.3 Performance Predictor
We derive a performance predictor on the basis of our

training dataset by selecting the derived measure which achieves
the strongest correlation and using it as basis for a linear re-

1P-values reflect the probability of obtaining the coefficients
by chance (null Hypothesis: H0). If the probability is lower
than a given significance level, H0 can be rejected.

gression model. For this training dataset, the model is:

RMSE = α · (1−Gini) · Sparsity + β (5)

and the regression lines are shown in Figure 4.

●

●

●

●

●

●

●
●

0e+00 1e−04 2e−04 3e−04 4e−04

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

(1−Gini) * Sparsity

R
M

S
E

Epinions_CF

Flixter_CF

ML1M_CF
Netflix_CF

Epinions_MF

Flixter_MF

Netflix_MF

ML1M_MF

Regression Overall
Regression UB−CF
Regression MF

Figure 4: Linear Regression for UB-CF (blue) and
MF (black): the index (1 −Gini) · Sparsity describes
well the performance of MF and even better that of
UB-CF on the training dataset.

We see in Figure 4 how the regression lines generalize the
RMSE values of MF (black line) and UB-CF (blue line). All
training instances are captured well. The performance of
UB-CF is captured better than that of MF, but both re-
gression lines show the same trend and relative positions of
the training instances. Since all of these lines show similar
tendencies, we conclude that the relation between our mea-
sure and the results of different algorithms is approximately
the same. They differ only by a vertical shift, denoted as
β in Eq. 5. The red regression line is computed on all in-
stances and delivers a (rougher) prediction of RMSE for an
arbitrary CF-algorithm.

As a small experiment on the predicted performance of
our regression-based predictor, we learn a regression model
on one of the two CF algorithms and measure how well it
predicts the performance of the other algorithm. In partic-
ular, we check whether the difference between the predicted
and real values is explainable just by a vertical shift. For
this purpose, we use following linear regression formula:

RMSE = α · (1−Gini) + β · Sparsity + γ (6)

In Table 2 we show the values learned for each parame-
ter – once using UB-CF, once using MF for learning. In
Table 3 we present the Pearson’s product moment correla-
tion between predictions made by linear regression learnt on
UB-CF and MF separately and between the real RMSE val-
ues. In the first row of the table we see a linear regression
learnt on the RMSE values of the UB-CF algorithm. The
regression was learnt using the formula 6. The second col-
umn depicts the correlation of the predicted values to the

Table 1: Pearson’s product moment correlation coefficients between our measures and the target (RMSE)
for UB-CF and MF: all coefficients except sparsity are significant at level lower than 0.03 (marked in red).

Measure Correlation with RMSE Alternative p-value
UB-CF MF Hypothesis UB-CF MF

1-Gini 0.9969276652 0.9760339396 true correl > 0 0.001536 0.01198
Entropy -0.9488311629 -0.9849657734 true correl < 0 0.02558 0.007517
Sparsity 0.737570808 0.7795095148 true correl > 0 0.1312 0.1102

(1-Gini) · Sparsity 0.9969300691 0.9758969096 true correl > 0 0.001535 0.01205
Entropy · Sparsity -0.9409525839 -0.9733224195 true correl < 0 0.02952 0.01334

Table 2: Regression parameters, learned on the
training data

Method α β γ

UB-CF 1158.0332 0.925 0.1004
MF 621.7 1.13 -0.2

real values achieved by UB-CF. The correlation coefficient is
here 0.99967. More importantly, the predictions also highly
correlate with RMSE values of MF (0.98455 marked in red)
that were not used for training the regression model. Sim-
ilarly, the predictions made by regression trained on MF
highly correlate with the real values of UB-CF (0.99649, in
blue). All correlation coefficients are statistically significant
at significance level lower than 0.01 (p-values in Table 3).

Table 3: Pearson’s product moment correlation co-
efficients of RMSE predictions with real values.

Regression on
UB-CF MF

Corr. p-value Corr. p-value

UB-CF 0.99967 0.000167 0.98455 0.00773
MF 0.99649 0.00175 0.98768 0.00616

6. CONCLUSIONS
Collaborative filtering algorithms are widely used in rec-

ommendation engines, yet their performance varies with the
properties of the dataset they are applied on. Until now, in
order to asses how eligible a CF algorithm is, given a data-
set, it was necessary to implement an algorithm and evaluate
it in a series of experiments. We developed a method that
predicts the performance of CF algorithms on an unknown
dataset, using two measures of the data properties and a
training sample derived from benchmark datasets.

Our approach encompasses computing the sparsity of the
co-ratings matrix and the distribution of co-ratings among
the users’ equivalence classes. We use these scores to train
an estimator on benchmark datasets, and then apply the
estimator on the unknown dataset. In our experiments, we
have shown that the performance of two CF algorithms (con-
ventional user-user collaborative filtering and SVD++ [8])
can be described by a linear regression model that uses our
scoring functions. In the future, we want to study the pre-

dictive power of our method on further CF algorithms.
Our method is based on training with benchmark data-

sets. Presently, the method is designed for datasets with
rating range between 1 and 5. Since there are not many such
datasets (four datasets known with this range), our training
dataset contains only four instances. Albeit we have shown
that our estimator can approximate the performance of CF-
algorithms, it is preferable to use larger training datasets. To
this purpose, we intend to investigate whether benchmark
datasets with different rating ranges can be used together,
although rating behaviour might vary, if the user can assign
a score between 1 and 100, instead of 1 to 5. Neverthe-
less, the results presented on our small dataset show a high
statistical significance.

7. REFERENCES
[1] D. Anand and K. Bharadwaj. Utilizing various sparsity

measures for enhancing accuracy of collaborative
recommender systems based on local and global
similarities. Expert Syst. Appl., 38(5):5101–5109, 2011.

[2] A. Belloǵın and P. Castells. A Performance Prediction
Approach to Enhance Collaborative Filtering
Performance. In ECIR, volume 5993 of LNCS, pages
382–393. Springer, 2010.

[3] A. Belloǵın, P. Castells, and I. Cantador. Predicting
the Performance of Recommender Systems: An
Information Theoretic Approach. In ICTIR, volume
6931 of LNCS, pages 27–39. Springer, 2011.

[4] M. D. Ekstrand and J. Riedl. When recommenders fail:
predicting recommender failure for algorithm selection
and combination. In RecSys, pages 233–236. ACM,
2012.

[5] Z. Gantner, S. Rendle, C. Freudenthaler, and
L. Schmidt-Thieme. MyMediaLite: A Free
Recommender System Library. In RecSys 2011, 2011.

[6] J. Griffith, C. O’Riordan, and H. Sorensen.
Investigations into user rating information and
predictive accuracy in a collaborative filtering domain.
In SAC, pages 937–942. ACM, 2012.

[7] N. P. Hurley and S. T. Rickard. Comparing measures of
sparsity. IEEE Transactions on Information Theory,
55(10):4723–4741, 2009.

[8] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In 14th ACM
SIGKDD, pages 426–434. ACM, 2008.

[9] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining, chapter 4, pages 158–164. Addison
Wesley, 2006.

