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Abstract. Neighbourhood-based collaborative filtering recommenders
exploit the common ratings among users to identify a user’s most simi-
lar neighbours. It is known that decisions made on a naive computation
of user similarity are unreliable, because the number of co-ratings varies
strongly among users. In this paper, we formalize the notion of reliable
similarity between two users and propose a method that constructs a
user’s neighbourhood by selecting only those users that are reliably sim-
ilar to her. Our method combines a statistical test and the notion of a
baseline user. We report our results on typical benchmark datasets.
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1 Introduction

Neighbourhood-based collaborative filtering (CF) engines return recommenda-
tions on the basis of user similarity. As shown in [4], similarity values computed
from too few co-ratings cannot be trusted. In this study, we assert that even sim-
ilarities between users with many ratings in common cannot always be trusted,
and we introduce the concept of reliable similarity between users. We propose
a mechanism that builds a user’s neighbourhood by selecting only users, whose
similarity is reliably useful for making recommendations to that user, no matter
whether the common ratings are few or many.

User similarity on the basis of few co-ratings is unreliable [4]. Researchers
have already proposed solutions to this problem, namely thresholds on the num-
ber of ratings two users should share to be considered similar, or assigning lower
weights to users that have too few ratings in common [4, 2, 7]. Their inherent
assumption is that similarity based on many co-ratings is informative. To see
why this assumption does not always hold, assume a database with seven items
j1, . . . , j7 and assume that the average rating for j1, j2, j6 is 4, the average rating
for j4 is 5, for j4 is 2 and the average for j3, j7 is 3. Table 1 shows the ratings of
four users for these items. Note that u2, u4 have given a rating of 1 to j7 (lower
than the average for the item), while u3 gave the highest possible rating.
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Given the similarity values between u1 and each other user (last column of
Table 1), should j7 be recommended to u1? The similarity of u1 to u2 and to
u4 is 1 but is based on too few ratings. If we set the threshold to 4 co-ratings,
then u2 and u4 will be ignored or assigned very low weights, whereupon j7 will
be recommended, since the similarity of u1 to u3 is more than 0.99. However,
u3 assigns to each item the average rating for this item, while u1 (similarly to
u2, u4) rated j2 higher than the average. What if people who love j2 find j7
intolerable, as both u2 and u4 do? Heuristics that assign higher weight to users
with many ratings exacerbate this problem. Instead of a heuristic, we propose a
significance-based solution, in which we decide whether a user (no matter how
many co-ratings she has) is informative for a recommendation.

Users\Items j1 j2 j3 j4 j5 j6 j7 cosine similarity to u1

u1 4 5 3 5 2 4 ? –

u2 4 5 ? ? ? ? 1 1

u3 4 4 3 5 2 4 5 0.9957

u4 ? 5 3 ? ? ? 1 1

Table 1: Ratings of four users (best rating: 5, worst: 1), and their cosine similarity to
user u1, for whom recommendations must be computed

In our approach, we first formalize the concept of baseline user – informally,
the average user for the population under observation. Then, we introduce the
concept of reliable similarity : we use the Hoeffding Bound (HB), derived from
Hoeffding’s Inequality [5], to test whether a given user is more similar to the ac-
tive user than the baseline user is; we then consider as neighbours to the active
user only those users whose similarity to her satisfies the bound. Hence, the rec-
ommender decides on statistical grounds whether it can make a recommendation
on neighbourhood-based similarity, no matter how small this neighbourhood is.

The paper is organised as follows. The next section contains related work. In
section 3 we present our method. In section 4, we evaluate our method on real
datasets, focussing on the interplay among reliability, neighbourhood size and
number of users with an empty neighbourhood. The last section summarizes the
findings and discusses open issues.

2 Related Work

Neighbourhood-based collaborative filtering has been studied thoroughly in nu-
merous publications. An overview and several studies on the most important
aspects can be found in [9] (Chapters 1, 4, 5), where much emphasis is put on
the predictive quality of a recommender’s output. We, however, do not focus on
further improvement of this criterion, but rather investigate how to improve the
”reliability of recommendations”. This should not be confused with the reliabil-
ity of conclusions made about recommender systems, in the process of evaluation
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using hypothesis testing, as described in [10]. In contrast to statistical testing in
the evaluation that aims to measure the significance of the error measures, we
investigate the significance of the neighbourhood of a user.

Herlocker et al. introduce the term of significance weighting [4]. They recog-
nize that similarity on only few co-ratings is not representative and the amount
of trust in this value should be limited. To limit the influence of those unreliable
similarity values they weight them with a term n/50, where n is the number of
co-ratings. Ma et al. [7] change the weighting schema defined by Herlocker et al.
Bell et al. also define a different weighting schema, which they call ”shrinkage”
[2]: they shrink the similarities towards a null-value to an extent that is inversely
proportional to the number of co-ratings. The fewer co-ratings between users ex-
ist, the less influence does the particular similarity value have on the predicted
rating value. However, none of these methods answers the question ”how many
co-ratings are enough?”, nor addresses the more important underlying question
”whose co-ratings are useful enough?”. We formalize the latter question. Instead
of using weights, we can decide whether a similarity between two users can be
relied upon, independently of the exact number. We stress that our method is
not a solution to the cold start problem, where no enough information about
users is known. Our goal is to quantify the reliability of the known information.

3 Building Reliable Neighbourhoods of Users

Our approach consists of a formal model on reliable similarity of a user, an
adjusted CF-based recommendation engine and a mechanism that builds a user’s
neighbourhood by only considering users that are truly similar to the peer user
and ignoring all other users. We concentrate on user-user collaborative filtering,
but our approach can be used for item-item CF as well.

3.1 Baseline Users

To compute the neighborhood of the active user uA, for whom recommendations
must be formulated, we first introduce the notion of a ”baseline user” uB – a
default, fictive user. Informally, a user x is reliably similar to uA, if uA is more
similar to x than to uB ; then, the neighbourhood of uA consists of the users who
are reliably similar to her. Formally, uB is a vector:

uB = [ir1, ir2, ..., irn−1, irn] (1)

where irj is a rating of the item j and n is the total number of items. We consider
three types of baseline users: the average user, the random Gaussian user and
the random uniform user. For the computation of the baseline users, we use an
initial sample of ratings Rtrain for training.

Average user: This baseline is computed by defining irj for an item j as the
average rating on j in Rtrain:

irj =
1

|U(j)|
∑

x∈U(j)

rx,j (2)
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where rx,j ∈ Rtrain is the rating of user x for item j and U(j) = {x|rx,j ∈ Rtrain}
is the set of users who rated j.

Random Gaussian user: This baseline is computed by specifying that the ratings
for each item j follow the normal distribution with parameters µ and σ approx-
imated on Rtrain. The value of irj for any j is generated from this distribution:

irj ∼ N (µ, σ2) (3)

Random uniform user: This baseline is computed by specifying that the ratings
for each item j follow the discrete uniform distribution with rmin and rmax being
the extreme rating values. Hence:

irj ∼ U{rmin, ..., rmax} (4)

For example, if a rating can be one to 5 stars, then rmin = 1 and rmax = 5.
We use the term of a baseline user to define the concept of reliable similarity,

which is based on a significance test.

3.2 Reliable Similarity between Users

To define reliable similarity, we begin with an arbitrary similarity function sim().
We will specify sim() explicitly later.

Definition 1 (Reliable similarity). Let sim() be a similarity function, and
let uB be the baseline user learned on Rtrain. We define the ”reliable similarity”
simrel between a user uA , for whom recommendations must be formulated, and
an arbitrary other user x as

simrel(uA, uB , x) =

{
sim(uA, x) , if sim(uA, x)� sim(uA, uB)

0 , otherwise
(5)

where we use the symbol � for ”significantly greater than”. User x is ”reliably
similar” to uA if simrel(uA, uB , x) > 0.

Checking for significance. We implement the ”significantly greater than”-test
of Def. 1 with help of the Hoeffding Inequality [5]:

Pr(X̂ −X ≥ ε) ≤ exp(−2nε2

R2
) (6)

The Hoeffding Inequality quantifies the probability that the deviation of an
observed average X̂ from the real average X of a random variable X is greater
than or equal to ε. It takes as inputs the range R of the random variable and
the number of observed instances n. The Hoeffding Inequality is independent
of any probability distribution, however, it is thereby more conservative than
other distribution-specific bounds [3]. The inequality can be transformed into
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the Hoeffding Bound that specifies the maximal allowed deviation ε given a
confidence level of 1− δ:

X̂ −X < ε ,where ε =

√
R2 · ln(1/δ)

2n
(7)

We apply the Hoeffding Bound to ensure that the true similarity between two
users is inside the ε-vicinity of the observed similarity. In particular, let u1, u2 be
two users. Then, X̂ stands for the observed difference in similarity between them
and X stands for the difference of their true similarities, thereby demanding that
the similarity function is an average, as dictated in [5].

Definition 2 (Similarity Function for Significance Testing). Let u1, u2 be
two users and let Ico-rated(u1, u2) be the set of items that both have rated. Then,
the similarity between u1, u2 is the following average (for a rating scale between
0 and 1, otherwise normalization is required):

sim(u1, u2) = 1−

∑
j∈Ico-rated(u1,u2)

|ru1j − ru2j |

|Ico-rated(u1, u2)|
(8)

On the basis of this similarity function, we state with confidence 1 − δ that
the non-observable true average similarity, denoted as sim(u1, u2), is within the

ε-vicinity of the observed average similarity, denoted as ŝim(u1, u2). The bound
ε represents the uncertainty of the observed information. The fewer co-rated
items we have for the two users, the larger is the possible deviation from the
true unobserved values. This is captured by the number of observations n, which
is here the cardinality of Ico-rated(u1, u2). The smaller the value of n, the larger
the bound ε (cf. Ineq.7) for a given confidence 1− δ.

The use the Hoeffding Bound in the significance test in Def. 1 means the
following: when we observe that ŝim(uA, x) > ŝim(uA, uB), we want to state
with confidence 1− δ that sim(uA, x) > sim(uA, uB), subject to a bound ε.

To this purpose, we first need to ensure that the same number of observations
is used for both the observed similarity ŝim(uA, x) and for the observed simi-

larity ŝim(uA, uB). Evidently, the set of co-rated items between uA, uB is the
set of items rated by uA, since the baseline user uB has a rating for every item.
Therefore, for each user x, whom we consider as potential neighbor of uA, we
compute sim(uA, uB) on Ico-rated(uA, x) rather than on Ico-rated(uA, uB). Thus,
the number of observations is fixed to n = |Ico-rated(uA, x)|.

In the left part of Figure 1, we depict the relative positions of ŝim(uA, x),

sim(uA, x), ŝim(uA, uB), sim(uA, uB) in a case where both the observed and
the true average similarity between uA, x is larger than the corresponding values
for uA, uB . In the right part of Figure 1, we depict again the relative positions
in a case where the observed average similarity between uA, x is larger than
the observed similarity between uA, uB , but the true similarity between uA, x
is smaller than the true similarity between uA, uB . Clearly, this is undesirable.
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ŝim(uA , uB) sim (uA , uB)

ŝim (uA , x )sim(uA , x)

ε ε

ε ε

ŝim(uA , uB) sim (uA , uB)

ŝim (uA , x )sim(uA , x)

ε ε

ε ε

Fig. 1: Relative positions of the observed similarity between uA, x and between uA, uB

and true similarity within the ε-vicinity of the corresponding observed similarity;
the observed similarities on the left allow the conclusion that the true similarity
between uA, x is larger than the true similarity between uA, uB ; the observed
similarities on the right lead to an erroneous conclusion, though.

Hence, we need a bound % such that it holds:

if ŝim(uA, x)− ŝim(uA, uB) > % then sim(uA, x) > sim(uA, uB)

To ensure with confidence 1− δ that sim(uA, x) > sim(uA, uB) for any values

of ŝim(uA, x), ŝim(uA, uB), we consider the extreme case, where ŝim(uA, x)

is smallest and ŝim(uA, uB) is largest, i.e. sim(uA, x) = ŝim(uA, x) − ε and

sim(uA, uB) = ŝim(uA, uB)+ε. Then, to ensure that sim(uA, x) > sim(uA, uB),
following must hold:(
ŝim(uA, x)− ε

)
−
(
ŝim(uA, uB) + ε

)
> 0 i.e. ŝim(uA, x)− ŝim(uA, uB) > 2ε

This means that % = 2ε. Thus, we specify that:

sim(uA, x)� sim(uA, uB)⇐⇒ ŝim(uA, x)− ŝim(uA, uB) > 2ε (9)

Definition 3 (Reliable Neighbourhood). Let uA be an active user. Subject
to Def. 1, the similarity function of Eq. 8 and the two invocations of the Hoeffding
Bound, we define her reliable neighbourhood as:

relNeighbourhood(uA, θ) = {x ∈ U |simrel(uA, uB , x) > θ} (10)

where U is a set of users and the similarity threshold θ is applied on reliable
neighbours only. All unreliable neighbours are excluded, even if their similarity
to uA is larger than θ.

3.3 Algorithms

Algorithms 1 and 2 show a pseudocode of our extensions to collaborative filtering.
Algorithm 1 computes a neighbourhood of an active user uA using our method
of checking the reliability of neighbours isReliableNeighbour, presented in Al-
gorithm 2. This method requires two parameters: θ is a similarity threshold, also
used in conventional CF, and δ controls the confidence of the Hoeffding Bound
used for checking the reliability. Since the criterion of the reliable similarity is
much stricter than the conventional similarity, it can happen that no neighbours
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Algorithm 1 Reliable CF

reliableNeighbourhood(uA) ← {}
uB ← initializeBaseline(Rtrain, baseline type)
for all {x ∈ U |x 6= uA} do
x reliable ← isReliable(uA, uB , x)
if x reliable then

reliableNeighbourhood(uA).add(x)
end if

end for
if reliableNeighbourhood(uA) == ∅ then

abstain or recommend most popular items
else

for all item i ∈ missingV alues(uA) do
predict r̂uA,i(reliableNeighbourhood(uA))

end for
return top-k ranked items

end if

Algorithm 2 isReliable(uA, uB , x)

x reliable ← true
if sim(uA, x) ≤ θ then
x reliable ← false

end if
ε ← computeHoeffdingBound(δ,
Range, numberCoRatings(uA, x))
(cf. Ineq. 7 and Eq. 10)

if ŝim(uA, x) − ŝim(uA, uB) ≤ 2ε
then
x reliable ← false

end if
if x reliable then

return true
else

return false
end if

for an active user can be found at all. For this case we also adjusted the conven-
tional CF algorithm. Our method can either abstain from recommending any
items until more information about the given user is collected, or it provides
non-personal recommendations e.g. the most popular items from the trainings
dataset. We state that it is beneficial to make fewer, but reliable recommenda-
tions, than to recommend items that will cause a negative attitude or a distrust
of the user towards the recommender.

4 Experiments

We evaluate our method on the datasets MovieLens (100k), Flixter, Netflix and
Epinions [8], comparing it to: a conventional user-based collaborative filtering
recommender with cosine similarity, denoted as CF, to the method by Bell et
al. called ”shrinkage”[2] and to ”significance weighting” by Herlocker et al.[4].
Since our goal is to compare different ways of building a neighbourhood, we im-
plemented only the weighting schemas from the methods described in [2] and [4]
and coupled them with the conventional CF algorithm. To ensure a fair compar-
ison, all methods use the same core CF algorithm with no further extensions, so
that only the way they build and weight their neighbourhoods differs.

We term our method ”Hoeffding-CF”, abbreviated hereafter as H-CF. We
consider one variant of our method per type of baseline user, denoted as H-
CF Gauss (Gaussian user), H-CF Uniform (uniform user) and H-CF Avg (av-
erage user). To optimise the parameters of the methods we run multiple ex-
periments using a grid search over the parameter space. Since the number of
experiments in the grid search is high, we chose a sample of users per dataset,
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Table 2: Samples of users on four datasets.

Dataset total Ratings sampled ratings

Flixter 572531 59560

MovieLens 100k 100k 100k (no sampling)

Netflix 100 M 216329

Epinions 550823 165578

taking over all their ratings. The evaluation settings are detailed below. Further
information regarding datasets and our samples is summarized in Table 2.

4.1 Evaluation Settings

As basis for our evaluation we use (a) the RMSE of the predictions made by
each method, and (b) the number of cases where the method encounters an
empty neighbourhood and cannot make a neighbourhood-based prediction; this
is denoted as Missing Predictions. However, a prediction is still provided using
a fallback-strategy explained later. We further compute the Average Neighbour-
hood Size, the average size of non-empty neighbourhoods built by each method.

It is evident that the RMSE values for the three variants of our method are
not directly comparable, because the value of Missing Predictions varies among
the methods. Hence, we refine RMSE into following measures:

– Neighbourhood-based RMSE : the RMSE of the predictions made using the
neighbourhoods of the users; limited to users with non-empty neighbour-
hoods (abbreviated hereafter as CF-RMSE)

– Fallback-strategy RMSE : the RMSE of the predictions made using the fall-
back strategy; limited to users with empty neighbourhoods

– Global RMSE : total RMSE by both Neighbourhood-based RMSE and Fallback-
strategy RMSE

As fallback strategy we use the recommendation of the most popular items not
rated by the active user. The impact of this strategy is encapsulated in Fallback-
strategy RMSE.

For the variants of our method, we vary δ: the lower the value, the more
restrictive is the confidence level of the Hoeffding Inequality and the less users
are considered reliably similar to a given user. Hence, we expect that a decrease
of δ will negatively affect the Average Neighbourhood Size and the Missing Pre-
dictions. For shrinkage and significance weighting we also optimize β and γ.

We further consider different similarity threshold values. As we have seen in
section 1, setting the threshold to a high value is not adequate for prohibiting
recommendations on the basis of unreliable neighbourhoods. It must be noted
that the CF may also fail to build neighbourhoods for some users, if the threshold
is set very restrictively. In total, we performed more than 250 experiments, all
of which were evaluated using 5-fold cross validation.
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4.2 Results

In Table 3, we present our results on each of the four datasets. For each of
the methods we present only the best value found by the grid search in course
of the optimization. The symbol ”— ” indicates that there are no applicable
values for this position (e.g. delta is not applicable for the CF). The sizes of the
neighbourhood in Table 3 is seemingly high, however, these are the values found
as approximatively optimal by the grid search.

The best result on on the Movie Lens 100k dataset was achieved by our
method (1st row in the Table) with a setting of δ = 0.999, a uniform baseline
user, and distance threshold of 0.25. The best value of global RMSE was 0.9864.
The best result achieved by the conventional CF was 1.0207 (5th row in the
table). This is a stable improvement verified using the 5-fold cross validation.
Shrinkage and significance weighting yielded a result close to the conventional
CF. When we compare our method with e.g. shrinkage with respect to the av-
erage neighbourhood size (row 1 and 3), then we notice an essential reduction
from ca. 898 to 447 users. This means that our method reduced the neighbour-

Table 3: Results on four benchmark datasets sorted with respect to global RMSE
(lower values are better) and grouped by the dataset.

Row Method Distance
Threshold

Setting Missing
Predictions

avgNeigh-
borhoodSize

global
RMSE

CF-
RMSE

fallback-
RMSE

MovieLens 100k
1 H-CF Uniform 0.25 δ = 0.999 2905 447 0.9864 0.9683 1.4929
2 H-CF Gauss 0.25 δ = 0.95 3229 259.55 0.9875 0.9684 1.4693
3 Shrinkage 0.2 β = 500 215 898.08 1.0192 1.0192 —
4 Sig. Weighting 0.2 γ = 200 215 898.08 1.0192 1.0192 —
5 CF 0.2 — 215 898.08 1.0207 1.0207 —
6 H-CF Avg 0.4 δ = 0.999 13079 132.38 1.0321 1.0390 0.9839

Flixter (sample of 1000 users)
7 H-CF Gauss 0.8 δ = 0.95 7047 78.14 1.0149 1.0133 1.0381
8 H-CF Avg 0.8 δ = 0.95 49918 5.84 1.0221 1.1355 0.9969
9 H-CF Uniform 0.4 δ = 0.95 4357 241.3580 1.0549 1.0532 1.1576
10 CF 0.7 — 3998 442.7564 1.0856 1.0856 —
11 Shrinkage 0.7 β = 50 3998 442.7564 1.0872 1.0872 —
12 Sig. Weighting 0.7 γ = 50 3998 442.7564 1.0889 1.0889 —

Netflix (sample of 1000 users)
13 H-CF Gauss 0.2 δ = 0.95 13601 199.66 0.9619 0.9511 1.1551
14 H-CF Uniform 0.2 δ = 0.95 11171 382.74 0.9622 0.9529 1.1849
15 H-CF Avg 0.2 δ = 0.999 60394 96.94 1.0075 1.0225 0.9669
16 Shrinkage 0.2 β = 200 4023 916.2519 1.0210 1.0210 —
17 Sig. Weighting 0.2 γ = 100 4023 916.2519 1.0214 1.0214 —
18 CF 0.2 — 4023 916.2519 1.0233 1.0233 —

Epinions (sample of 10 000 users)
19 H-CF Avg 0.3 δ = 0.5 165578 0 1.0074 — 1.0074
20 H-CF Gauss 0.8 δ = 0.5 164948 0.2770 1.01100 1.3964 1.0106
21 H-CF Uniform 0.4 δ = 0.5 159842 1.5113 1.0279 1.3215 1.0109
22 CF 0.7 — 113117 461.39 1.2843 1.2843 —
23 Shrinkage 0.7 β = 50 113117 461.39 1.2894 1.2894 —
24 Sig. Weighting 0.7 γ = 100 113117 461.39 1.2907 1.2907 —
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hoods by 451 users on average and still performed better than the conventional
CF. Regarding the baseline users on the Movie Lens dataset, the best results
were achieved by the uniform random baseline. The average user baseline led
to small neighbourhoods. This can be explained by the fact that many users in
the MovieLens dataset are similar to the average user. Using this baseline makes
the differences between user vectors insignificant and, consequently, many of the
users are not considered as reliable neighbours to the active user.

If no reliable neighbours of an active user can be found, then computing a
rating prediction is not possible. We counted the occurrences of this case in our
method (column ”missing predictions”). In this situation a fallback-strategy (e.g.
popular items) takes over the task of providing a recommendation (prediction
error is included in global RMSE). We observed that those cases become more
frequent when delta is low. This causes a more extensive pruning behaviour of our
method, because more neighbourhoods are considered unreliable. If we allow our
method to abstain from recommendation instead of using the fallback-strategy
the improvement of RMSE is even higher (0.9683; row 1, column CF-RMSE).
Also the conventional CF, shrinkage and significance weighting exhibit some
missing predictions. They are caused by either new users or new items that are
not known from the training dataset.

We performed similar experiments on a random sample of 1000 users on the
Flixter dataset. Also on this dataset our method achieved the best globalRMSE
value of 1.0149 this time using a Gaussian baseline. The conventional CF (row 10)
yielded a value of 1.0856 using neighbourhoods bigger by 365 users on average.
Shrinkage and significance weighting were not able to outperform CF.

Also on a random sample of 1000 users from the Netflix dataset our method
outperformed other approaches with respect to global RMSE, reaching the level
of 0.9619 using the Gaussian user baseline. When abstention was allowed the im-
provement was even more substantial and reached the level of 0.9511, compared
to e.g. shrinkage with 1.0210 (row 16). Also here we observed an essential re-
duction of the neighbourhood cardinality from ca. 916 by the shrinkage method
down to ca. 200 by our approach. This proves that our approach selects the
reliable neighbours, who are more informative for the preferences of an active
user than the competitive methods.

The last dataset we performed our experiments on is the (small) Epin-
ions dataset (cf. Table 3). Here our method clearly dominated the conventional
CF. Hoeffding-CF achieved an RMSE of 1.0074 compared to 1.2843 by the
conventional CF. Significance weighting and shrinkage performed worse than
CF. Our approach recognized unreliable neighbourhoods and switched from the
neighbourhood-based recommendation to the fallback-strategy that performs
better on this dataset (cf. the columns CF-RMSE and fallback-RMSE ). The
average number of neighbours in the first row shows that the neighbourhood
was limited to the minimum and this yielded the best result. Differently than
on the other datasets, here the average user baseline performed the best. The
statement about its strictness in the significance testing still holds. This very
strictness was beneficial on this dataset. In row 19 we see that the neighbour-
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Fig. 2: Best results achieved by each method. Lower values of global RMSE are better.
Our method, Hoeffding-CF, achieves best results on each dataset.

hood was reduced to 0 i.e. there was no neighbourhood-based recommendations.
All recommendations were provided by the fallback-strategy that, in this case,
performed better.

4.3 Summary of Findings

Our experiments show that Hoeffding-CF is capable of recognizing unreliable
neighbourhoods and selecting neighbours that are informative for the prefer-
ences of an active user. It outperformed the conventional collaborative filtering,
shrinkage and significance weighting on all datasets. When abstention from pro-
viding recommendations was allowed, the improvement in terms of RMSE was
often even more substantial. All of the best results were achieved using a smaller
neighbourhood than in case of conventional CF and remaining approaches. A
summary of the best results by each method is presented in Figure 2.

We also observed that the parameter delta plays an important role in find-
ing the optimal results. The lower its value, the stricter is the testing of the
neighbourhood and the smaller is the average neighbourhood. Consequently, the
number of predictions provided by the baseline method rises. The optimal value
of delta varies across different dataset around 0.95. Cross-validation can be used
for tuning on each dataset.

The choice of the baseline user has also an effect on the performance. We
observed that the random-based user (Gaussian and uniform baseline) perform
better than the average user baseline on most datasets. The reason for that is
that many users are similar to the average user, so it is difficult to identify a user
that is significantly more similar to a given user than the average. Hence, when
the average user is the baseline, each user has only a few significant neighbours.
On the Epinions dataset, however, this led to an improvement of accuracy.
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5 Conclusions

We investigated the problem of neighbourhood-based recommendations when the
similarity between users cannot be fully trusted. This problem does not emanate
solely from data sparsity: even users with many ratings may be uninformative.
We introduced the concepts of baseline user and of reliable similarity, and we use
statistical testing to select, for a given user, those users who are informative, truly
similar neighbours to her, ignoring users that do not contribute more information
than the baseline user. To ensure efficient computation, we use the Hoeffding
Inequality for statistical testing.

Experiments on real datasets show that the use of reliable similarity improves
recommendation quality: our method is superior to the conventional CF, shrink-
age and significance weighting on all datasets, while the superiority in the forth
dataset is mainly owed to a good performance of the fallback-strategy rather
than to neighbourhood-based recommendations. Our method outperforms other
approaches, although it uses smaller neighbourhoods. This means that the reli-
ability, rather than the size of a neighbourhood is decisive for good predictions.

Our next task is comparing our method to approaches presented in [6], [1]
and also formulating reliable recommendations for matrix factorization, which is
a popular method in recommenders, but relies on activities of heavy raters. Are
heavy raters informative for a specific user, though? We intend to investigate this
issue by extending our concepts of baseline user and reliable similarity towards
reliable matrix-factorization-based recommenders.
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