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ABSTRACT
Numerous stream mining algorithms are equipped with for-
getting mechanisms, such as sliding windows or fading fac-
tors, to make them adaptive to changes. In recommender
systems those techniques have not been investigated thor-
oughly despite the very volatile nature of users’ preferences
that they deal with. We developed five new forgetting tech-
niques for incremental matrix factorization in recommender
systems. We show on eight datasets that our techniques im-
prove the predictive power of recommender systems. Exper-
iments with both explicit rating feedback and positive-only
feedback confirm our findings showing that forgetting infor-
mation is beneficial despite the extreme data sparsity that
recommender systems struggle with. Improvement through
forgetting also proves that users’ preferences are subject to
concept drift.

Categories and Subject Descriptors
H.3.3 [Information Search-Retrieval]: Information Fil-
tering

General Terms
Algorithms, Experimentation, Performance

Keywords
Recommender Systems, Matrix Factorization, Forgetting,
Stream Mining
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1. INTRODUCTION
Recommender systems learn users’ preferences to predict

and recommend a personalized set of items to a given user.
Learning users’ preferences is a challenging task. One of it’s
most demanding aspects is the constant change of the prefer-
ences and of the environment of a recommender system. The
changes are driven by the evolution of users’ taste and by
external, unpredictable events. A successful recommender
system has to account for those changes and adapt to them,
ideally in real time, in order to reflect only the current inter-
ests of its users. The existence of change, which in stream
mining is often referred to as concept drift or shift, implies
that some of the data we use to build our prediction models
are outdated. Using outdated information to build a predic-
tion model leads to performance decline. Consequently, we
should forget the outdated information in order to keep our
models up-to-date with the current state of the environment
and the current preferences of users.

In [9], Matuszyk and Spiliopoulou propose two strategies
for selecting outdated information and show that forgetting
such information leads to better predictive performance of
a recommender system. In this paper, we extend their work
by proposing new, more sophisticated forgetting strategies.
We show that they further improve the predictive power of
recommender systems for two types of user feedback.

Depending on the type of feedback users provide, recom-
mendation problems can be formulated in two ways: rating
prediction or item prediction. In a rating prediction prob-
lem the main task is to predict missing values in a numeric
user-item ratings matrix. However, some systems employ
positive-only user preferences. The user-item matrix can
be seen then as a boolean value matrix, where true values
indicate a positive user-item interaction, and false values
indicate the absence of such interaction. In systems with
positive-only feedback, the task is to predict unknown true
values in the ratings matrix, i.e. item prediction.

While most of the available literature in the field provides
relevant research on the rating prediction problem, we think
that issues specific to the item prediction are just as relevant.
The main motivation for this is that while relatively few
online systems have an implemented numeric rating feature,
most systems use positive-only feedback.
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The methods proposed in this paper are designed for and
experimented in both settings – rating prediction and item
prediction. To our knowledge, this is the first work that
consolidates the validity of a recommendation algorithm in
both of these two fundamentally distinct scenarios.

In summary, our contributions are as follows:

• We developed five new, more sophisticated forgetting
strategies and divided them into two categories.

• We extended the evaluation protocol of Matuszyk and
Spiliopoulou[9] by using an incremental measure of re-
call.

• We performed experiments with forgetting on positive-
only feedback and on rating feedback.

• We showed that one of our new strategies outperforms
the baseline with respect to incremental recall.

• We confirmed on in total eight datasets that forgetting
information is beneficial in recommender systems.

This paper is structured as follows. In the next section
we discuss related work. Section 3 explains the matrix fac-
torization algorithm we used together with our extensions
as well as our new forgetting strategies. Evaluation protocol
and measures are mentioned in Section 4. In Section 5 we
report about our results. Finally, we conclude our work and
discuss remaining issues in Section 6.

2. RELATED WORK
Collaborative Filtering (CF) algorithms take usage data

to compute models and make recommendations. These us-
age data share all the characteristics of a data stream. From
this perspective, CF can be addressed as a data stream prob-
lem. However, most research in the field of recommender
systems assume that data is static. In a real world sys-
tem this kind of approach usually requires frequent batch
retraining of models in order to keep models up to date,
which potentially causes serious scalability problems, as the
available data continuously grows over time. When process-
ing data streams, key differences from static datasets need
to be taken in consideration. Data elements arrive on-line at
unpredictable rates and order. Also, it cannot be assumed
that data streams fit in the working memory. Data elements
must be discarded or archived at some time point.

One key aspect of most data stream mining algorithms is
that they build models incrementally. Neighborhood-based
incremental CF for ratings data has been introduced in [11],
and adapted for positive-only feedback in [10]. These use in-
cremental cache structures in order to be able to incremen-
tally update a similarity matrix. Incremental matrix fac-
torization for recommendation has been first studied in [13]
using the Fold-in method for Singular Value Decomposition
[1]. However, state-of-the-art factorization for recommender
systems relies on optimization methods [12]. Incremental
versions of these optimization methods have been studied in
[14, 7] for rating prediction and in [16] for item prediction.

In [15], Vinagre and Jorge added forgetting capabilities
to incremental neighbourhood-based algorithms for positive-
only data. Forgetting is achieved either abruptly, using a
fixed-size sliding window over data, or gradually, using a
decay function in the similarity calculation. However, these
techniques are only effective in the presence of a sudden

global change in the feedback data, and do not account for
more subtle changes that may occur, for instance, on the
individual users’ level. A similar approach is given in [4]
with ratings data, in a batch algorithm.

In [6] Li et al. explicitly approach recommendation as a
stream mining problem using the CVFDT algorithm for rec-
ommendation with user interest drifts. While this is an in-
teresting approach, accuracy is only competitive when item
taxonomies are added as an additional source of information.

3. SELECTIVE FORGETTING METHOD
We develop forgetting strategies for incremental matrix

factorization. For our experiments we extend a state-of-the-
art representative for this class of algorithms, the BRISMF
algorithm (biased regularized incremental simultaneous ma-
trix factorization) proposed by Tákacs et al. [14]. Neverthe-
less, our forgetting strategies are also applicable to different
matrix factorization methods.

3.1 Matrix Factorization with Forgetting
The method proposed by Tákacs et al. in [14] is a batch

method. However, the authors also proposed an algorithm
for retraining latent users features (cf. Algorithm 2. in [14])
that can be used as a stream-based algorithm. Latent user
features are updated as new observations arrive in a stream,
ideally in real time. Since item features are not updated
online, the method requires an initial phase, in which the
latent item features are trained. We adopted this procedure
also in our extension of this algorithm.

Initial Phase.
Similarly to [9] and [14], in this phase we use stochastic

gradient descent (SGD) to decompose the user-item-rating
matrix R into two matrices of latent factors R ≈ P ·Q, where
P is the latent user matrix and Q the latent item matrix
with elements pu,k and qi,k respectively. k is an index of the
corresponding latent factor. In every iteration of SGD we
use the following formulas to update the latent factors [14]:

pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k) (1)

qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k) (2)

Where η is a learn rate of the SGD and λ is a regulariza-
tion parameter that prevents SGD from overfitting.

Online Phase.
Once the initial phase is finished the online phase is started.

Here, evaluation and prediction tasks run in parallel (cf. Sec-
tion 4 for more information on the evaluation setting). With
every new rating arriving in a data stream the correspond-
ing latent user factor is updated. We extended the algorithm
proposed in [14] and [9]. A pseudo code showing our exten-
sions and the time point, when forgetting is triggered, is
presented in Algorithm 1. As input the algorithm takes the
original rating matrix R and two factor matrices P and Q
that were learnt in the initial phase. Furthermore, SGD re-
quires setting a few parameters e.g. η as the learning rate.
λ is a regularization parameter and k stands for the number
of latent dimensions. ru,i is the rating that appeared in a
data stream and that the algorithm adapts to.



We developed two types of forgetting strategies that are
called at three different places in the code. In line 7, a rating-
based forgetting is triggered (cf. Subsection 3.2). Lines 14
and 15 call the second type of our strategies, latent factor
forgetting, for latent user vectors and latent item vectors
respectively (cf. Subsection 3.3). In the next subsection we
provide a detailed explanation of those strategies.

Algorithm 1 Incremental Learning with Forgetting

Input: ru,i, R, P,Q, η, k, λ
1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: r̂u,i = −→pu · −→qi //predict a rating for ru,i
4: evaluatePrequentially(r̂u,i, ru,i) //update evaluation

measures
5: −→r u∗ ← getUserRatings(R, u)
6: (−→r u∗).addRating(ru,i)
7: forgetRatings(−→r u∗) //old ratings removed
8: epoch = 0
9: while epoch < optimalNumberOfEpochs do

10: epoch++; //for all retained ratings
11: for all ru,i in −→r u∗ do
12: −→pu ← getLatentUserVector(P, u)
13: −→qi ← getLatentItemVector(Q, i)
14: −→pu ← latentForgetting(−→pu)
15: −→qi ← latentForgetting(−→qi )
16: predictionError = ru,i −−→pu · −→qi
17: for all latent dimensions k 6= 1 in −→pu do
18: pu,k ← pu,k +η · (predictionError · qi,k−λ ·pu,k)
19: end for
20: end for
21: end while

3.2 Rating-based Forgetting
The first category of our forgetting strategies is based on

filtering ratings of a user u. Before a latent vector pu of
a user is retrained using a new rating that occurred in a
stream, the set of ratings belonging to the user R(u) is fil-
tered to exclude the outdated information. Here, we describe
four strategies for selecting the outdated information. There
is no ground truth that defines when an information is out-
dated. Nevertheless, we show that our strategies improve
accuracy of a recommender system (cf. Section 5). In all
of those strategies we have built in a threshold defining the
minimum number of ratings a users needs to have for the
forgetting methods to be used. We use a threshold of five
ratings. Users with less than five ratings are not affected by
our forgetting methods.

Sensitivity-based Forgetting.
As the name suggests, this strategy is based on sensitivity

analysis. We analyse, how much the latent user vector pu
changes after including a new rating of this user ru,i into
a model. A latent user vector should always reflect user’s
preferences. With a new rating ru,i we gain more informa-
tion about a user and we can adjust the model of his/her
preferences (the latent vector pu) accordingly. If the new
rating is consistent with the preferences of this particular
user that we know so far, the change of the latent vector
should be minimal. However, if we observe that the latent
vector of this user changed dramatically after training on the
new rating, this indicates that the new rating is not consis-

tent with the past preferences of this user. Thus, we forget
this rating, i.e. we do not update the user’s latent vector
using this rating, since it does not fit to the rest of user’s
preferences.

In real life recommenders this occurs frequently, e.g. when
users buy items for other people as presents, or when multi-
ple persons share one account. Those items are outliers with
respect to preferences observed so far. Learning model based
on those outliers distorts the image of user’s preferences.

In order to identify those outlier ratings, we first store
the latent user vector at time point t, denoted hereafter
as ptu. Then, we simulate our incremental training on the
new rating ru,i without making the changes permanent. We
obtain an updated latent user vector pt+1

u . Our next step
is then calculating a squared difference between those two
latent vectors using the following formula:

∆pu =

k∑
i=0

(pt+1
u,i − p

t
u,i)

2 (3)

Furthermore, for each user we store and update incre-
mentally at each time point the standard deviation of the
squared difference SD(∆pu). If the following inequality is
true, then it indicates that the new rating ru,i is an outlier:

∆pu > α · SD(∆pu) (4)

Where α is a parameter that controls the sensitivity of the
forgetting strategy. It is specific for every dataset and has
to be determined experimentally.

Global Sensitivity-based Forgetting.
Similarly to the previous strategy, Global Sensitivity-based

Forgetting is also based on sensitivity analysis. However, in
contrast to Sensitivity-based Forgetting, this strategy does
not store the standard deviation of squared differences of la-
tent vectors separately for each user but globally. Formally,
it means that the inequality (4) needs to be changed into:

∆pu > α · SD(∆) (5)

Where ∆ is a squared difference of latent user vectors for all
users before and after including a new rating.

LastNRetention.
To the category of rating-based forgetting we also count

the LastNRetention strategy by Matuszyk and Spiliopoulou
[9]. This forgetting strategy uses sliding window, which of-
ten finds an application in stream mining and adaptive algo-
rithms. Here however, a sliding window is defined for each
user separately. LastNRetention means that the last N rat-
ings in a stream of a user are retained and all remaining rat-
ings are forgotten. We compare this strategy with our new
forgetting strategies and present the results in Section 5.

RecentNRetention.
This forgetting strategy is also based on a sliding win-

dow by Matuszyk and Spiliopoulou [9]. However, here they
defined the size of a user-specific window not in terms of
ratings, but in terms of time. If N = 3days, then only rat-
ings from the last three days are kept and all the remaining
ones are forgotten. This strategy can be also set up to use
only ratings from e.g. the last session. For completeness
and comparison we also experiment with this strategy in
our work.



3.3 Latent Factor Forgetting
This type of forgetting strategies is based on latent fac-

tors. After learning upon a new rating ru,i the corresponding
user latent vector pu or the corresponding item vector qi are
altered in a way dictated by one of the following strategies.

Forget Unpopular Items.
In this forgetting strategy unpopular items are penalized.

Latent item vectors are multiplied with a value that is lower
for unpopular items to decrease their importance in the pre-
diction of interesting items. Formally, this strategy is ex-
pressed by the following formula:

−−→
qt+1
i = (−α−|R(i)| + 1) ·

−→
qti (6)

R(i) is the set of ratings for item i. α is a parameter
that controls, how much the latent item vector is penalized.
(−α−|R(i)| + 1) is an exponential function that takes low
values for items with few ratings (for α values >1). An
advantage of this function is that for values of α > 1 it
always takes values from the range [0, 1).

We also experimented with penalizing popular items, how-
ever, this strategy was not successful. Therefore, we do not
present it in detail here.

User Factor Fading.
User Factor Fading is similar to using fading factors in

stream mining. In this strategy latent user factors are mul-
tiplied by a constant α ∈ [0, 1]

−−→
pt+1
u = α ·

−→
ptu (7)

The lower is this constant, the higher is the effect of forget-
ting and the less important are the past user’s preferences.

SD-based User Factor Fading.
As in User Factor Fading, this strategy alters latent user

vectors. Hoverer, the multiplier here is not a constant but it
depends on the volatility of user’s factors. The assumption
behind this strategy is that highly volatile latent vectors (the
ones that change a lot), are unstable. Therefore, forgetting
should be increased until the latent vectors stabilize.

Similarly to Sensitivity-based Forgetting, in this strategy
we measure how much the latent user factor changed com-
pared to the previous time point. We calculate again the
squared difference between pt+1

u and ptu and denote it as ∆u

(cf. Equation 3). Subsequently, we use the standard devia-
tion (SD) of ∆u in an exponential function:

−−→
pt+1
u = α−SD(∆u) ·

−→
ptu (8)

For high standard deviation of ∆u the exponential func-
tion takes low values, penalizing unstable user vectors. The
parameter α controls the extent of the penalty. For α > 1
this function always takes values in the range [0, 1).

4. EVALUATION SETTINGS
Our method requires a short offline initialization phase;

hence, we need different evaluation settings for the online
and the offline phases. We adopt a framework from [9] that
combines those two evaluation methods and we extend it by
using an additional measure, incremental recall.

4.1 Evaluation Protocol
In Figure 1 we present the split of the dataset between

online and offline phase of our method based on [9]. In the
initial phase two subsets are used. The first subset is a
training set (”Batch Train” in Fig. 1) and the second subset
is a test set for the initialization set (”Batch Test”). The
exemplary split ratios that we also used in our experiments
are depicted in the figure. In the online phase prediction
and evaluation run in parallel. This evaluation method is
inspired by the prequential evaluation in stream mining by
Gama et al. [5].

30% 20% 50%

1) Batch Train 3) Stream Test + Train
2) Batch Test + 
  Stream Train

Batch Stream

Train Train

Test Test

Colour legend

Figure 1: Split of the dataset between the initializa-
tion and online phase [9].

First, for a newly arrived rating in a data stream a predic-
tion is made. Based on this prediction evaluation measures
are updated and, finally, the model is updated using the
new rating. This procedure guarantees that no prediction is
made for a rating that has been seen before. However, the
transition from the batch phase to the online phase is prob-
lematic. So far, datasets 1) and 3) from Figure 1 are used
for learning. It means that dataset 2) represents a gap in
the model. To avoid this gap, which is problematic for on-
line methods, we use this part of the dataset also for online
learning. Since the dataset 2) was used for testing already,
we start the online evaluation on dataset 3).

4.2 Evaluation Measures
For our evaluation we use two measures. First of them is

a sliding variant of RMSE (Root Mean Squared Error) [9].

RMSE =

√
1

|T |
∑

(u,i)∈T

(ru,i − r̂u,i)2 (9)

Where r̂u,i is a predicted value for ru,i and T is the test
set of ratings. In our sliding variant of RMSE, T contains n
most current ratings from the data stream. For our experi-
ments we use n = 500.

Our second evaluation measure is incremental recall. For
measuring it we use the methodology proposed by Cremonesi
et al. in [3]. At each new rating in the data stream the mea-
sure is updated in the following way.
A prediction is made for the new rating ru,i. Additionally to
this prediction, 1000 further unrated items are selected ran-
domly. Cremonesi et al. assume that those 1000 items are
not relevant for the user. For all of them rating predictions
are made and all the predictions are sorted. After the sort-
ing the position p of ru,i is determined. If p < N , then a hit
is counted. Finally, incrementalRecall@N is determined
using the following formula:

incrementallRecall@N =
#hits

|Testset| (10)



Dataset Ratings Users Items Sparsity

Music-listen 335,731 4,768 15,323 99,54%
Music-playlist 111,942 10,392 26,117 99,96%
LastFM-600k 493,063 164 65,013 95,38%
ML1M 1,000,209 6,040 3,706 95,53%
ML100k 100,000 943 1,682 93,7%
ML1M GTE5 226,310 6,014 3,232 98,84%
Netflix(1000 users) 216,329 1,000 10,825 98%
Epinions (10k users) 1,016,915 10,000 365,248 99,97%

Table 1: Description of datasets

In our experiments we use incrementalRecall@10. Since
we experiment with two different kinds of feedback, we use
two different sorting orders in the procedure of measuring
recall. For the explicit rating feedback we sort the predic-
tions with respect to the predicted rating value. For positive
only feedback we assume a rating of 1 for existence of feed-
back. Therefore, the predictions are sorted with respect to
proximity of the prediction to 1.

5. EXPERIMENTS
In our experiments we use two types of datasets. The

first type encompasses data with explicit rating feedback:
MovieLens 1M and 100k1, a sample of 10 000 users from the
extended Epinions [8] dataset and a sample of 1000 users
from the Netfilx dataset. In this type of datasets our selec-
tion is limited, because many forgetting strategies require
timestamp information. Table 1 provides some details on
those datasets.

The second type of datasets consist positive-only feed-
back. Those datasets consist of a chronologically ordered
set of user-item pairs in the form (u, i). Music-listen consists
of music listening events, where each pair corresponds to a
music track being played by a user. Music-playlist consists
of a timestamped log of music track additions to personal
playlists. Contrary to Music-listen, Music-playlist contains
only unique (u, i) pairs – users are not allowed to add a mu-
sic track twice to the same playlist. Both Music-listen and
Music-playlist are extracted from Palco Principal2, an on-
line community of portuguese-speaking musicians and fans.
Furthermore, we also use a subset of the LasfFM3 dataset
[2] – LastFM-600k – and a binarized version of MovieLens
1M dataset that we call ML1M-GTE5 hereafter. In ML1M-
GTE5 we assumed that a rating value of 5 indicates a posi-
tive feedback. All remaining ratings have been removed and
considered as negative feedback. More information on those
datasets is also presented in Table 1.

All of our forgetting strategies require a setting of ex-
actly one parameter. Their performance depends strongly
on the correct setting. To determine the approximately op-
timal value of the parameters we use a grid search over the
parameter space. The remaining parameters we set to the
following values: number of dimensions = 40, learn rate η
= 0.003 and regularization parameter λ = 0.01. To show
the benefit of using forgetting strategies, we compare their
results against a baseline method – the same matrix factor-
ization algorithm with no forgetting strategy.

In Figure 2 we show our results on four datasets with ex-
plicit rating feedback. The corresponding numerical values

1http://www.movielens.org/
2http://www.palcoprincipal.com
3http://last.fm
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Figure 2: Best results achieved by each method with
respect to the average incremental recall@10 using
rating feedback, grouped by dataset. Higher results
are better
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Figure 3: Best results achieved by each method with
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are presented in Table 2. The entries in the Table are sorted
with respect to the average incremental recall@10. Incre-
mental recall, same as sliding RMSE, are online measures
that monitor the performance over time. Hence, behind
each of the results stands a curve of values representing the
corresponding evaluation measure over time. However, due
to the space constraints and for an easier comparison, we
present only average values. On all four datasets our new
strategies took the top positions. On the ML1M, Netflix
and ML100k datasets the ForgetUnpopular strategy yielded
the best result. On the Epinions dataset also one of our new
forgetting strategies was the best, this time the UserFactor-
Fading strategy. Here, also the UserFactorFading strategy
was very successful.

For this type of user feedback we also provide measures
with average sliding RMSE (cf. Figure 3). Opinions diverge
about the importance of those two evaluation measures.
Therefore, we provide both of them. However, in evaluation
of top-N recommenders more importance is attributed to
recall-based measures. In our evaluation methodology that



we adopted from [3], measuring precision is not necessary,
since it can be derived from the recall directly.

With respect to the average sliding RMSE, forgetting strate-
gies also show an advantage (cf. Fig 3) compared to the base-
line (no forgetting). Here, one of the strategies by Matuszyk
and Spiliopoulou [9], LastNRetention, yielded the best re-
sults. Nevertheless, many of our new strategies also per-
formed better than the baseline.

Forgetting Strategy Parameter Avg. Incre-
mental Re-
call@10

ML1M
ForgetUnpopular 1.02 0.168368003
LastNRetention 10 0.1651057374
Sensitivity-basedForgetting 0.5 0.1606939037
GlobalSensitivity-basedForgetting 0.01 0.1597336372
RecentNRetention 24h 0.1581627191
NoForgetting – 0.1581627191
UserFactorFading 0.999999 0.1581627191
SD-based User Factor Fading 1.000001 0.1578246763

Netflix (sample 1000 users)
ForgetUnpopular 1.1 0.1707896384
SD-based User Factor Fading 1.001 0.1246312781
Sensitivity-basedForgetting 0.1 0.1242929253
GlobalSensitivity-basedForgetting 0.1 0.1233110233
UserFactorFading 0.99999999 0.1232758314
NoForgetting – 0.1232758314
LastNRetention 40 0.1175009409
RecentNRetention 1h 0.1002589166

ML100k
ForgetUnpopular 1.1 0.0865524865
LastNRetention 10 0.076753316
SD-based User Factor Fading 1.001 0.0733544253
UserFactorFading 0.999 0.0725157144
Sensitivity-basedForgetting 1.35 0.0717012517
GlobalSensitivity-basedForgetting 0.7 0.0710979034
NoForgetting – 0.0710803956
RecentNRetention 24h 0.0710803956

Epinions Extended (sample 10k users)
UserFactorFading 0.5 0.0230770405
SD-based User Factor Fading 1.2 0.0226747025
ForgetUnpopular 4 0.0086745416
GlobalSensitivity-basedForgetting 0.5 0.0082184146
NoForgetting – 0.0082184146
Sensitivity-basedForgetting 1.001 0.0082184146
RecentNRetention 24h 0.0081456019
LastNRetention 20 0.0077852762

Table 2: Best results of each method using rating
feedback sorted w.r.t. avg. incremental recall@10
and grouped by dataset. Higher results are better.
Best results in bold face.

In Figure 4 and Table 3 we present our results on datasets
with positive-only user feedback. On the LastFM-600k data-
set the SD-based User Factor Fading strategy performed the
best, followed by UserFactorFading, both of which outper-
formed the baseline by a factor of approximately 2. On
ML1M-GTE5 the strategies ForgetUnpopular and SD-based
User Factor Fading clearly took the top positions. On Music-
playlist dataset the LastNRetention strategy performed the
best. The most extreme gain through forgetting methods is
visible on the Music-listen dataset. The SD-based User Fac-
tor Fading strategy performed almost five times better than
the baseline method. It reached an average incremental re-
call value of 0.177 as compared to 0.036 by the baseline. The
UserFactorFading strategy has also shown a strong perfor-
mance on this dataset.

For datasets with positive-only feedback we do not provide

RMSE measures, since all ratings in those datasets are equal
to one. Measuring prediction error in form of RMSE in this
scenario would not be meaningful.
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Figure 4: Best results achieved by each method with
respect to the average incremental recall@10 using
positive-only feedback, grouped by dataset. Higher
results are better.

6. CONCLUSIONS
We investigated the problem of forgetting information in

recommender systems for incremental matrix factorization.
The goal of our research is to make recommender systems
more adaptive to changes of users’ preferences and of the
environment. Those changes are innate to learning users’
preferences, as they are subject to influence from outside and
to intrinsic evolution of taste and interests. Our approach
to improve the adaptivity of recommenders is by forgetting
outdated information.

We developed five new forgetting strategies for incremen-
tal matrix factorization that heuristically distinguish be-
tween the current and outdated information in form of rat-
ings. We extended a state-of-the-art algorithm, BRISMF
[14], for usage of our strategies. We performed numerous ex-
periments on eight datasets with two types of user feedback.
To our knowledge, this is the first work that consolidates
the validity of a recommendation algorithm on both types
of user feedback: explicit ratings and positive-only feedback.
We used two different evaluation measures for stream-based
recommender systems, sliding RMSE and incremental recall.
On all of those datasets we have shown that our forgetting
strategies improve the predictive power of a recommender.

Our ForgetUnpopular strategy was particularly successful
on datasets with explicit user feedback in form of ratings.
Experiments with positive-only feedback have shown that on
this type of data the SD-based User Factor Fading strategy
yields extreme improvements. On the Music-listen dataset
the result of this strategy was better than the baseline with
no forgetting by a factor of nearly five.

An improvement of results by using forgetting techniques
also proves that users’ preferences are subject to concept
drift. This is one of main challenges in stream mining that,
as we have proven, also applies to recommender systems.

Since our forgetting strategies can differentiate between
outdated and current information, they can also be used as



Forgetting Strategy Parameter Avg. Incre-
mental Re-
call@10

Music-playlist
LastNRetention 10 0.0510906661
RecentNRetention 3h 0.0499863333
SD-based User Factor Fading 1.01 0.0487104038
UserFactorFading 0.99 0.0471174833
Sensitivity-basedForgetting 0.1 0.0471037842
ForgetUnpopular 100 0.0443777217
NoForgetting – 0.0443777217
GlobalSensitivity-basedForgetting 0.1 0.0443142059

LastFM-600k
SD-based User Factor Fading 1.04 0.0424265769
UserFactorFading 0.99 0.040675639
ForgetUnpopular 1.4 0.0295259066
RecentNRetention 24h 0.0226743311
LastNRetention 10 0.0221790142
NoForgetting – 0.0208641556
GlobalSensitivity-basedForgetting 0.1 0.0206361797
Sensitivity-basedForgetting 1 0.0202472756

ML1M-GTE5
SD-based User Factor Fading 1.1 0.0424313423
ForgetUnpopular 1.01 0.0402411073
RecentNRetention 3h 0.0310388703
GlobalSensitivity-basedForgetting 0.5 0.0303556332
Sensitivity-basedForgetting 1.001 0.0296813349
LastNRetention 10 0.0294485924
UserFactorFading 0.99999999 0.0290675976
NoForgetting – 0.0290675976

Music-listen
SD-based User Factor Fading 1.2 0.177245787
UserFactorFading 0.99 0.138297306
ForgetUnpopular 4 0.0695838741
LastNRetention 20 0.0476573054
RecentNRetention 1h 0.0473491079
NoForgetting – 0.0356019772
Sensitivity-basedForgetting 1.001 0.0354992912
GlobalSensitivity-basedForgetting 0.5 0.0342442817

Table 3: Best results of each method using positive-
only feedback, sorted w.r.t. avg. incremental re-
call@10 and grouped by dataset. Higher results are
better. Baseline in bold face.

change detectors for recommender systems. To our knowl-
edge, none of change detection algorithms known from the
stream mining domain have been successfully adapted to
the recommender system domain. Our immediate next step
is to investigate the eligibility of our strategies as change
detectors.
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