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Abstract. Many stream classification algorithms use the Hoeffding In-
equality [6] to identify the best split attribute during tree induction.
We show that the prerequisites of the Inequality are violated by these
algorithms, and we propose corrective steps. The new stream classifi-
cation core, correctedVFDT, satisfies the prerequisites of the Hoeffding
Inequality and thus provides the expected performance guarantees. The
goal of our work is not to improve accuracy, but to guarantee a reliable
and interpretable error bound. Nonetheless, we show that our solution
achieves lower error rates regarding split attributes and sooner split de-
cisions while maintaining a similar level of accuracy.

1 Introduction

After the seminal work of Domingos and Hulten on a very fast decision
tree for stream classification [1], several decision tree stream classifiers have
been proposed, including CVEDT [7], Hoeffding Option Tree [9], CEFDTu [11],
VFDTec [3], as well as stream classification rules (e.g. [8,4]). All of them apply
the Hoeffding Bound [6] to decide whether a tree node should be split and how.
We show that the Hoeffding Inequality has been applied erroneously in numerous
stream classification algorithms, to the effect that the expected guarantees are
not given.

We propose correctedVFDT, which invokes the Inequality with correct pa-
rameter settings and uses a new split criterion that satisfies the prerequisites.
Thus, correctedVFDT provides the expected performance guarantees. We stress
that our aim is not a more accurate method, but a more reliable one, the per-
formance of which can be properly interpreted.

The paper is organised as follows. In the next section, we present studies
where problems with the usage of the Hoeffding Bound have been reported and
alternatives have been proposed. In section 3, we explain why the usage of the
Hoeffding Inequality in stream classification is inherently erroneous. In section 4
we propose a new method that alleviates these errors, and in section 5, we prove
that it satisfies the prerequisites of the Hoeffding Inequality and thus delivers
the expected performance guarantees. In section 6, we show that our approach
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has competitive performance on synthetic and real data. Section 7 summarizes
the findings and discusses remaining open issues.

2 Related Work

Concerns on the reliability of stream classifiers using the Hoeffding Bound have
been raised in [9]: Pfahringer et al. point out that ”Despite this guarantee,
decisions are still subject to limited lookahead and stability issues.” In Section
6, we show that the instability detected in [9] is quantifiable.

Rutkowski et al. [10] claim that the Hoeffding Inequality [6] is too restrictive,
since (A) it only operates on numerical variables and since (B) it demands an
input that can be expressed as a sum of the independent variables; this is not
the case for Information Gain and Gini Index. They recommend McDiarmid’s
Inequality instead, and design a "McDiarmid’s Bound’ for Information Gain and
Gini Index [10]. However, as we explain in Section 3, the most grave violation of
the Hoeffding Inequality in stream classification concerns the independence of
the variables (prerequisite B). This violation of the Inequality’s assumptions is
not peculiar to the Hoeffding Inequality, it also holds for the way the McDiarmid
Bound uses the McDiarmid Inequality. Replacing one Inequality with another
does not imply that the prerequsite is satisfied. Hence, we rather replace the split
criterion with one that satisfies its prerequisites. We concentrate on the Hoeffding
Inequality in this work. The McDiarmid Inequality is more general indeed and
we can study it in future work. For the purposes of stream classification, though,
the Hoeffding Inequality seems sufficient, because restriction (A) is irrelevant:
the split functions return real numbers anyway.

3 Hoeffding Bound - Prerequisites and Pitfalls

The Hoeffding Inequality proposed by Wassily Hoeffding [6] states that for a
random variable Z with range R, the true average of Z, Z, deviates from the
observed average Z not more than e, subject to an error-likelihood §:

R2 - 1n(1/9)

\Z — Z| <& ,where ¢ =
2n

(1)
where n is the number of instances. Inequality 1 poses following PREREQUISITES:

1. The random variables must be identically distributed and almost surely
bounded; the variable ranges are used when computing the bound.
2. Random observations of the variables must be independent of each other.

In many stream classification algorithms, Z is the value returned by the func-
tion computing the ’goodness’ of a split attribute. Given a significance level 6,
the Hoeffding Inequality states whether the instances n seen thus far are enough
for choosing the best split attribute. This is mission-critical, since wrong splits



(especially for nodes close to the root) affect the performance of the classifier neg-
atively. In the presence of drift, this may also lead to uninformed decisions about
discarding or replacing a subtree. We show that stream classification methods
violate the prerequisites of the Hoeffding Inequality (subsection 3.1) and that
the decision bound is wrongly set (3.2).

3.1 Violation of Prerequisites

Domingos and Hulten [1] proposed Information Gain (IG) and Gini Index (GI)
as exemplary split functions appropriate for the Hoeffding Bound: at each time
point, the data instances in the tree node to be split are considered as the
observations input to the Hoeffding Inequality, and the values computed upon
them by IG/GI are assumed to be averages.

Violation 1: The Hoeffding Inequality applies to arithmetical averages only [6].
IG and GI ”can not be expressed as a sum S of elements” (i.e. ”of the independent
variables”) [10]. We do not elaborate further on this issue, since it is obvious.

Violation 2: The variables, i.e. the observations used for the computation of the
split criterion must be independent (PREREQ. 2). However, consider a sliding
window of length 4 and assume the window contents wy = [z1, za, x5, 24] and
then wy = [x3, 24, x5, 6], after the window has moved by two positions. Obvi-
ously, the window contents overlap. When a function like IG computes a value
over the contents of each window, it considers some instances more than once.
Thus, the computed values are not independent.

3.2 A Decision Bound that Cannot Separate between Attributes

Domingos and Hulten specify that the Hoeffding Bound should be applied as
follows, quoting from [1], second page, where G is the split function:

” Assume G is to be maximized, and let X, be the attribute with highest
observed G after seeing n examples, and X} be the second-best attribute.
Let AG = G(X,) — G(X}) > 0 be the difference between their observed
heuristic values. Then, given a desired J, the Hoeffding bound guarantees
that X, is the correct choice with probability 1 — ¢ if n examples have
been seen at this node and AG >e.” !+ 2

Claim. The Hoeffding Bound does not provide the guarantee expected in [1].

Proof. Assume that the split candidates are X,Y with IG values Gx and Gy,
observed averages G'x, Gy and real averages Gx, Gy (cf. Figure 1). Considering

! In [1], this text is followed by a footnote on the "third-best and lower attributes” and
on applying Bonferroni correction to ¢ if the attributes in the node are independent.
2 Note: we use ¢ instead of €, Z for the true average and Z for the observed one.



Fig. 1. Observed vs real averages of two random variables: the observed averages differ
by more than e, but the Hoeffding Bound does not guarantee that Gy is superior.

n observations in range R (of the split test), the probability that the real average
Z deviates from the observed one Z by more than ¢ is bounded by Ineq. 1 [6]:

R . _ 2
PrE -7 > <) < eopl ) (2)

In Figure 1, we see that é; is greater then (/?)\( by more than e, but this
does not hold for the real averages Gy and Gx. Hence, a span of one ¢ is not
sufficient to guarantee separation of the gain values.

This claim holds also when we consider Gx —Gy as a single random variable
AG (as done in [1]): the range of AG is the sum of ranges of Gx and Gy, again
requiring a change of the decision bound. We give the correct bound in 4.1.

4 New Method for Correct Usage of the Hoeffding Bound

Our new core correctedVFDT encompasses a correction on the decision bound,
and a new split function that satisfies the prerequisites of [6] (cf. section 3).

4.1 Specifying a Proper Decision Bound

Domingos and Hulten define AG = Gy — Gx as a random variable with range
R = logc (for Information Gain IG, ¢ is the number of classes) and check whether
AG — AG exceeds e [1], where ¢ is a positive number. However, this definition of
AG assumes that it is already non-negative, i.e. there exists some non-negative
constant k, so that |Gy — Gx| > k holds.

Assume that there exists a k > 0 so that the true average * E(|Gy — Gx|)
is > k. The absolute value is a convex function and |Gy — Gx| does not follow
a degenerate distribution, so Jensen’s inequality holds in its strict form, i.e.:

E(|Gy — Gx|) > |E(Gy — Gx)| = |E(Gy) — E(Gx))| ()

3 We temporarily change the notation from Z to E(Z) for better readability.



So, we cannot conclude that |G7y — G7X| > k, i.e. even if the true average of
|Gy — Gx| exceeds some positive value, we cannot say that Y is superior to X.

We must thus perform two tests with the Hoeffding Inequality, (1) for AG; :=
Gy — Gx under the assumption that AG; > 0, and (2) for —AG; := Gx — Gy,
assuming that AG; < 0. Equivalently, we can perform a single modified test on
a variable AG := Gy — Gx that ranges over [—logc;+logc], i.e. it may take
negative values! Consequently, the new range of the variable AG that we denote
as R’ is twice as high as the original range R. To apply the Hoeffding Inequality
on such a variable, we must reset the decision bound to:

SR -;;(1/5): 432-121;(1/5):2_ /R2-12r;§1/5) @

i.e. to twice the bound dictated by Ineq. 1. Then, the correctness of the split
decision is guaranteed given §. Alternatively, we can keep the original decision
bound and adjust the error-likelihood to 6. Further, a larger number of instances
is required to take a split decision. We study both effects in Section 6.

4.2 Specifying a Proper Split Function

Functions like Information Gain cannot be used in combination with the Hoeffd-
ing Inequality, because they are not arithmetic averages [10]. We term a split
function that is an arithmetic average and satisfies the two prerequisites of the
Hoeffding Inequality (cf. Section 3) as proper.

For a proper split function, we need to perform the computation of the ex-
pected quality of a node split on each element of the node independently. We
propose Quality Gain, which we define as the improvement on predicting the
target variable at a given node v in comparison to its parent Parent(v), i.e.

QGuain(v) = Q(v) — Q(Parent(v)) (5)

where the quality function Q() is the normalized sum:

QW) = ﬁ " 0q(0) (6)

(IS

and oqg() is a function that can be computed for each instance o in v. Two possible
implementations of oq() are: isCorrect() (Eq. 7), whereas Q() corresponds to the
conventional accuracy, and lossReduction() (Eq. 8) that can capture the cost of
misclassification in skewed distributions:

1, if o is classified correctly

isCorrect(o) = { (7)

0, is misclassified

lossReduction(o) = 1 — misclassificationCost (o) (8)

We use isCorrect() to implement og() hereafter, and term the so implemented
QGain() function as AccuracyGain. However, the validation in the next Section



holds for all implementations of og(). In the research regarding split measures
the misclassification error has been indicated as a weaker metric than e.g. infor-
mation gain [5]. Our goal is, however, not to propose a metric that yields higher
accuracy of a model, but one that can be used together with the Hoeffding
Bound without violating its prerequisites and thus allowing for interpretation of
the performance guarantees given by this bound. In Section 6.2 we show that
this metric is competitive to information gain in terms of accuracy and it reveals
further positive features important for a streaming scenario.

5 Validation

We first show that our new split function satisfies the prerequisites of the Hoeffd-
ing Inequality. Next, we show that no correction for multiple testing is needed.

5.1 Satisfying the Assumptions of the Hoeffding Bound

Quality Gain, as defined in Eq. 5 using a quality function as in Eq. 6, satisfies
the PREREQUISITES of the Hoeffding Inequality. PREREQ 1 (cf. Section 3) says
that the random variable has to be almost surely bounded. The implementations
of og() in Eq. 7, range in [0, 1] and the same holds for the quality function Q()
in Eq. 6 by definition. Hence PREREQ 1 is satisfied.

PREREQ 2 (cf. Section 3) demands independent observations. In stream min-
ing, the arriving data instances are always assumed to be independent observa-
tions of an unknown distribution. However, as we have shown in subsection 3.1,
when Information Gain is computed over a sliding window, the content over-
lap and the combination of the instances for the computation of entropy lead
to a violation of PREREQ 2. In contrast, our Quality Gain considers only one
instance at each time point for the computation of Q() and builds the arith-
metical average incrementally, without considering past instances. This ensures
that the instances are statistically independent from each other. The Quality
Gain metric uses those independent instances to compute the goodness of a
split. The result of this computation depends, however, on the performance of
the classifier. Since, we consider a single node in a decision tree, the classifier
and the entire path to the given node remains constant during the computation
of the Hoeffding Bound. Consequently, all instances that fall into that node are
conditionally independent given the classifier. This conditional independence of
instances given the classifier allows us to use the Hoeffding Bound upon our split
function.

5.2 Do We Need to Correct for Multiple Testing?

As explained in subsection 4.1, the split decision of correctedVFDT requires two
tests on the same data sample: we compute ¢ for the best and second-best at-
tributes. Since the likelihood of witnessing a rare event increases as the number
of tests increases, it is possible that the a-errors (errors of first type) accumulate.
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Fig. 2. When stating that Y is superior to X with confidence 1—§, the error likelihood
is d; error and non-error areas are represented by numbers I - IV.

To verify whether a correction for multiple tests (e.g. Bonferroni correction) is
necessary, we consider the different possible areas of value combinations sepa-
rately. The areas, enumerated as I-IV, are depicted in Figure 2.

Figure 2 depicts a situation where the Hoeffding Bounds of attributes X and
Y are separable, and allow us to state with confidence 1 — § that Y is superior
to X. There is a chance of § that this statement is wrong. We distinguish three
cases for variable X (and equivalently for Y):

Case (1): the true average X is indeed in the e-vicinity of X: X —¢ < X < X+e
(area represented by II in Figure 2)

Case (2): X is left to the e-vicinity of X:X<X—¢ (area I)

Case (3): X is right to the s-vicinity of X: X > X + ¢ (areas III and IV)

According to the Hoeffding Inequality, the likelihood of the Case (1) is 1 —6;
we denote this case as normal or (n). We assume that the likelihood of error ¢
is distributed symmetrically around the e-vicinity of X , hence the likelihood of
Case (2) and of Case (3) is equal to 6/2. In Case (2), the real average X is at
the left of the e-vicinity, hence the split decision would be the same as in Case
(1). Therefore, we mark Case (2) as not_harmful (nh). In contrast, Case (3) for
variable X may lead to a different split decision, because we would incorrectly
assume that X is higher than it truly is. This is represented by areas III and IV
in Figure 2. We mark Case (3) as harmful (h).

In Figure 3 we show all possible combinations of cases and their likelihoods.
This tree depicts the likelihood of the outcome of each combination; the middle
level corresponds to the first test, the leaf-level contains the outcomes after the
first and the second test. For instance, the left node on the middle level denotes
the not_harmful (nh) error of the first test. At its right we see the normal case
(n) with likelihood 1 — §. The leaf nodes of the tree represent the likelihood of
outcomes after performing two tests: green nodes correspond to the not_harmful
outcomes (n), (nh); red ones are potentially harmful (h); the blue ones contain
both harmful and not_harmful outcomes.

Even if we consider all blue solid nodes as harmful, the sum of the likelihoods
of harmful outcomes (cf. Eq. 9) is still smaller than §, hence a correction for
multiple tests (e.g. Bonferroni correction) is not necessary.

2 5 2 5 52 52

Z_|_§(1_5)+Z+§(1—6)—&—ZZ(S—Z (9)
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Fig. 3. Likelihood of all possible test outcomes. The middle level of the tree stands
for outcomes of the first test. The leafs correspond to likelihood of outcomes after
performing two tests. Green dashed leafs stand for no error (n) or not_harmful error
(nh). Red dotted ones denote harmful error (h). Blue solid leafs combine harmful and
not_harmful errors, so they have no label.

6 Experiments

We evaluate our correctedVFDT with og() implemented as isCorrect() (Eq. 7),
i.e. with AccuracyGain as our split function (cf. end of Section 4). We measure
the impact of the modifications to VFDT [1] on classifier performance.

To quantify the impact of the improper use of the Hoeffdingin Inequality we
use two indicators: the number of Incorrect Decisions and the average number
of instances (Average n) considered before taking a split decision. For this ex-
periment, a dataset with known ground truth is necessary. The artificial dataset
and the experiment are described in 6.1.

When experimenting on real data, we quantify the performance of the stream
classifier as Avg. Accuracy and the tree size as Avg. # Nodes. For this experiment,
presented in subsection 6.2, we use the Adult dataset from the UCI repository[2].

6.1 Experimenting under Controlled Conditions

For the experiment under controlled conditions, we generate a dataset with a
discrete multivariate distribution, as described in Table 1. The dataset has two
attributes: A; with three discrete values in {A, B,C}, and Az with two discrete
values in {D, E'}. The target variable takes values from {c1,ca}.

In this experiment, we simulate a decision tree node and observe what split
decision is taken in it. Since the distribution of the dataset is known , the at-
tribute that each split function should choose at each moment is known. As we
show in Table 2, we consider VEDT with IG - denoted as 'InfoGain’ (cf. first
two rows of Table 2 below the legend) for a decision bound of le and 2e, and
we compare with our correctedVFDT with Accuracy Gain - denoted as ’Accu-
racyGain’ (cf. last two rows of Table 2), again for le and 2e. This means that



Ao D E
Alci : 0.0675|c2 : 0.1575(c1 : 0.0675|ce : 0.1575
A1 Bler 1 0.1350(|¢2 : 0.0900]|c; : 0.1575(ca : 0.0675
Cler 2 0.0450(c2 : 0.0050]|c; : 0.0450(c2 : 0.0050

Table 1. Joint probability distribution of the synthetic dataset

Setup Incorrect |Average n| Alternative Hypothesis p-value
Decisions

InfoGain, 1e 25738 117.31 |P(incorrect decision) > 0.05|< 2.2e — 16

InfoGain, 2¢ 1931 1671.53 |P(incorrect decision) < 0.05|< 2.2¢ — 16

AccuracyGain, 1¢|3612 17.68 |P(incorrect decision) < 0.05|< 2.2e — 16

AccuracyGain, 2¢|22 37.45 |P(incorrect decision) < 0.05|< 2.2e — 16

Table 2. Results of 100 000 repetitions of decision process on a split attribute at a
node in a decision tree. We compare VFDT with ’InfoGain’ to correctedVFDT with
"AccuracyGain’ for the incorrect invocation of the Hoeffding Inequality (decision bound
1le) and for the correct invocation (decision bound 2¢). For the performance indicators
Incorrect Decisions’ and ’Average n’ lower values are better. The last column shows
the results of the significance test on the deviation of the measured error from the
theoretically permitted one, depicted in the ’Alternative Hypothesis’ column, where
the error-likelihood § of the Hoeffding Bound is set to 0.05.

we consider both the erroneous decision bound 1e and the corrected invocation
of the Inequality with 2¢ (cf. 4.1) for both VEDT and correctedVFDT.

In Table 2 we show the results, aggregated over 100,000 runs. In the second
column, we count the "Incorrect Decisions’ over a total of 100,000 decisions. The
third column ’Average n’ counts the number of instances seen before deciding
to split a node. The confidence level of the Hoeffding Inequality was set to
1 —0 = 0.95, hence only 5,000 (5%) incorrect split decisions are theoretically
permitted. We run a binomial test to check whether the difference between the
observed error and the expected one is significant (column before last) and return
the computed p-value (last column of Table 2).

The original VEDT (1%¢ row below legend in Table 2) exceeds the theoretical
threshold of 5000 Incorrect Decisions by far. The corrected invocation of the
Hoeffding Inequality (subsection 4.1) reduces the number of incorrect decisions
by 92.497% (cf. 2"¢ row in Table 2), but at the cost of increasing the number of
instances required to make a split from 117.31 to 1671.53. This means that the
learner would wait approximatively 10 times longer to take a split decision and
would abstain from possibly good split decisions. In contrast, correctedVFDT
makes less incorrect decisions and decides sooner, as seen in the last two rows
of Table 2. The 3" row shows that even with the incorrect decision bound,
correctedVFDT makes less incorrect decisions than the theoretic threshold. Best
results are achieved for the correct decision bound of course (4" row): only 22
of the total 100,000 decisions are wrong, corresponding to an improvement of



Setup Incorrect |Average n| Alternative Hypothesis p-value
Decisions
InfoGain, le 14034 347.55 |P(incorrect decision) > 0.01|< 2.2e — 16
InfoGain, 2¢ 339 2872.24 |P(incorrect decision) < 0.01|< 2.2e — 16
. P(incorrect decision) < 0.01| 0.9757
AccuracyGain, 1¢|1062 2242 PEincorrect decisiong > 0.01] 0.02617
AccuracyGain, 2¢|2 49.7  |P(incorrect decision) < 0.01|< 2.2e — 16

Table 3. Results analogous to those in Table 2, but with a confidence level of 0.99.

99.915 %. At the same time, our method for 2¢ needs only 2.24% of the instances
needed by VFDT, i.e. correctedVFDT converges much sooner than VFDT.

To ensure that these results are statistically significant we present the results
of the binomial tests. The alternative hypothesis in the 4** column in Table 2
differs from row to row. In the first row, the alternative hypothesis says that the
number of incorrect decisions will be higher than the theoretic bound (by the
Hoeffding Inequality); the p-value in the last column states that the alternative
hypothesis should be accepted already at a confidence level lower then 2.2e — 16.
Hence, the theoretical bound is clearly violated by the original VFDT. The
alternative hypothesis in the other three rows states that the number of incorrect
decisions will stay within bound; this hypothesis is accepted.

In Table 3, we compare VFDT to correctedVFDT at a confidence level 1 —
0 =99%. The results are similar to Table 2, except for the correctedVFDT with
incorrect decision bound: the theoretic bound is violated (significantly, see last
column), i.e. even a good method will ultimatively fail if the Hoeffding Inequality
is invoked erroneously: both the corrected decision bound and a proper split
function are necessary for good performance (see last row).

6.2 Experiments on a Real Dataset

We have shown that the correctedVFDT with Accuracy Gain and correct deci-
sion bound (2¢) leads to an essential reduction of incorrect split decisions and
that the decisions are taken much sooner. We now investigate how these new
components influence the classification performance and size of created models
on a real dataset. We use the dataset ” Adults” from the UCI repository [2].

Stream mining algorithms are sensitive to the order of data instances and to
concept drift. To minimize the effect of concept drift in the dataset, we created
10 permutations of it and repeated our tests on each permutation, setting the
grace period of each run to 1. Therefore, the results presented in this section
are averages over ten runs. This also increases the stability of the measures and
lowers the effect of random anomalies.

For the two algorithms, we used the parameter settings that lead to best
performance. For VEDT, these were 1—¢§ = 0.97 and decision bound & = 0.05, i.e.
the invocation of the Hoeffding Inequality is incorrect. According to subsection



4.1, the true confidence is therefore much lower. For correctedVFDT, the correct
decision bound 2¢ was used, the confidence level was set to 1 — 3§ = 0.6. The
second column of Table 4 shows the average accuracy over the 10 runs, the third
columns shows the average number of nodes of the models built in all runs.

lAlgorithm ‘Avg. Accuracy‘Avg. # Nodes‘
VFDT 81,992 863.7
correctedVFDT 80,784 547.2

Table 4. Performance of VFDT and correctedVFDT of it on the ” Adult dataset”. The
columns ”Avg. Accuracy” and ”Avg. # Nodes” denote the accuracy and the number
of nodes of the decision trees, as averaged over ten runs.

According to the results in Table 4, VEDT reached a high accuracy, but it
also created very large models with 863.7 nodes on average. That high amount
of nodes not only consumes a lot of memory, but it also requires much com-
putation time to create such models. Furthermore, such extensive models often
tend to overfit the data distribution. In the second row of the table we see that
correctedVFDT maintained almost the same accuracy, but needed only 63.36%
of the nodes that were created by VFDT.

Our correctedVFDT does not only have the advantage of lower computation
costs regarding time and memory usage, but also a split confidence that is in-
terpretable. As we have shown in the previous subsection, the Hoeffding Bound
of the VFDT cannot be trusted, for it does not bound the error the way it is
expected. Consequently, setting the split confidence to 0.97 does not mean that
the split decisions are correct with this level of confidence. In contrast to that,
our method does not violate the requirements for using the Hoeffding Bound
and thus, we can rely on the split decisions with the confidence that we have set.

For this particular amount of data and concept contained in this dataset
(approximatively) optimal results have been achieved using the confidence of
0.6. This is much lower than 0.97 used with the VFDT, but this is only an
illusory disproportion. In fact, the confidence guaranteed by the VFDT was much
lower due to the violations of the requirements of the Hoeffding bound and it is
probably not possible to estimate it. Usage of our method allows to interpret the
results. We can see that it is necessary to give up the high confidence to achieve
the best result on a so small dataset.

7 Conclusions

We have shown that the prerequisites for the use of the Hoeffding Inequality in
stream classification are not satisfied by the VFDT core [1] and its successors. In
a controlled experiment, we have demonstrated that the prerequisite violations
do have an impact in classifier performance.



To alleviate this problem, we have first shown that the Hoeffding Inequality
must be invoked differently, to cater for an input that may take negative values.
We have adjusted the decision bound accordingly. We have further specified a
family of split functions that satisfies the Inequality’s prerequisites and incorpo-
rated them to our new core correctedVFDT. Our experiments on synthetic data
show that correctedVFDT has significantly more correct split decisions and needs
less instances to make a decision than the original VFDT. Our experiments on
real data show that correctedVFDT produces smaller models, converges faster
and maintains a similar level of accuracy. More importantly, the performance
results of correctedVFDT are reliable, while those of the original VFDT are not
guaranteed by the Hoeffding Inequality.

We are currently extending correctedVFDT to deal with concept drift. Fur-
ther, we want to explicate the premises under which arithmetical averages and
more elaborate computations on the arriving stream (as in [10] for McDiarmid’s
Inequality) satisfy the prerequisite of independence. In our future work we are
also going to investigate the performance of Accuracy Gain, its robustness to
noise and concept drift on further datasets.
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