
Selective Forgetting for Incremental Matrix
Factorization in Recommender Systems

Pawel Matuszyk and Myra Spiliopoulou

Otto-von-Guericke-University Magdeburg,
Universitätsplatz 2,

D-39106 Magdeburg, Germany
{pawel.matuszyk,myra}@iti.cs.uni-magdeburg.de

Abstract. Recommender Systems are used to build models of users’
preferences. Those models should reflect current state of the preferences
at any timepoint. The preferences, however, are not static. They are sub-
ject to concept drift or even shift, as it is known from e.g. stream mining.
They undergo permanent changes as the taste of users and perception of
items change over time. Therefore, it is crucial to select the actual data
for training models and to forget the outdated ones.
The problem of selective forgetting in recommender systems has not
been addressed so far. Therefore, we propose two forgetting techniques
for incremental matrix factorization and incorporate them into a stream
recommender. We use a stream-based algorithm that adapts continu-
ously to changes, so that forgetting techniques have an immediate effect
on recommendations. We introduce a new evaluation protocol for recom-
mender systems in a streaming environment and show that forgetting of
outdated data increases the quality of recommendations substantially.

Keywords: Forgetting Techniques, Recommender Systems, Matrix Fac-
torization, Sliding Window, Collaborative Filtering

1 Introduction

Data sparsity in recommender systems is a known and thoroughly investigated
problem. A huge number of users and items together with limited capabilities
of one user to rate items result in a huge data space that is to a great extent
empty. However, the opposite problem to the data sparsity has not been studied
extensively yet. In this work we investigate, whether recommender systems suffer
from too much information about selected users. Although, the most algorithms
for recommender systems try to tackle the problem of an extreme data sparsity,
we show that it is beneficial to forget some information and not consider it
for training models any more. Seemingly, forgetting information exacerbates the
problem of having not enough data. We show, however, that much of the old
information does not reflect the current preferences of users and training models
upon this information decreases the quality of recommendations.

Reasons for the information about users being outdated are manifold. Users’
preferences are not static - they change over time. New items emerge frequently,

This is an author's copy. The final publication is available at:
http://link.springer.com/chapter/10.1007%2F9783319118123_18

2 Pawel Matuszyk and Myra Spiliopoulou

depending on the application scenario, e.g. news in the internet. Also the per-
ception of existing items changes due to external factors such as advertisement,
marketing campaigns and events related to the items. The environment of a rec-
ommender system is dynamic. A recommender system that does not take those
changes into account and does not adapt to them deteriorates in quality. Retrain-
ing of a model does not help, if the new model is again based on the outdated
information. Consequently, the information that a recommender is trained upon
has to be selected carefully and the outdated information should be forgotten.

Since a recommender should be able to adapt constantly to changes of the
environment, ideally in the real time, in our work we use an incremental, stream-
based recommender. It does not learn upon a batch of ratings, but it considers
them as a stream, as it is known from e.g. stream mining. Incremental methods
have the advantage of learning continuously as new ratings in the stream arrive
and, therefore, are always up to date with the current data. The batch-based
methods on the other hand use a predefined batch of ratings to train the model
and are, after arrival of new ratings, constantly out of date. Our method that
uses matrix factorization still requires a retraining of latent item factors. How-
ever, the latent user factors are kept up to date constantly between the retraining
phases. Also, since the general perception of items changes slower than prefer-
ences of a single user, the retraining is not needed as frequently as in the case of
batch learners. A further essential advantage of incremental methods is that they
can adapt immediately as changes occur. Because an incremental recommender
learns upon ratings as soon as they arrive, it can react to changes immediately.
Hence, it can capture short term changes, whereas a batch learner has to wait
for the next retraining phase to adapt to changes.

Gradual changes in users’ preferences and changes in item perception speak
in favour of forgetting the outdated information in recommender systems. This
type of changes can be related to concept drift in stream mining. It describes slow
and gradual changes. There is also a second type of changes called concept shift.
These changes are sudden, abrupt and unpredictable. In recommender systems
those changes can be related e.g. to situations, where multiple persons share an
online account. If we consider an online shop scenario, a recommender would ex-
perience a concept shift, when the owner of an account buys items for a different
person (e.g. presents). When recommending movies a person can be influenced
by preferences of other people, which can be a short-lived, single phenomenon,
but it also can be a permanent change. In both cases a successful recommender
system should adapt to those changes. This can be achieved by forgetting the
old outdated information and learning a model based on information that re-
flects the current user preferences more accurately. In summary the contribution
of our work is threefold: 1) We propose two selective forgetting techniques for
incremental matrix factorization. 2) We define a new evaluation protocol for
stream-based recommender systems. 3) We show that forgetting selected ratings
increases the quality of recommendations.

This paper is structured as follows. In section 2 we discuss related work we
used in our method, stressing the differences to existing approaches. Section 3

Selective Forgetting for Incremental MF in Recommender Systems 3

explains our forgetting mechanisms. The experimental settings and evaluation
protocol are described in Section 4. Our results are explained in Section 5. Fi-
nally, in section 6, we conclude our work and discuss open issues.

2 Related Work

Recommender systems gained in popularity in recent years. The most widely
used category of recommender systems are collaborative filtering (CF) methods.
An intuitive, item-based approach in CF has been published in 2001 [6]. Despite
its simplicity this method based on neighbourhoods of items has shown to have a
strong predictive power. In contrast to content-based recommenders, CF works
only with user feedback and without any additional information about users or
items. Those advantages as well as the ability to cope with extremely sparse
data made CF a highly interesting category of algorithms among practitioners
and researchers. Consequently, many extensions of those methods have been
developed. A comprehensive survey on those methods can be found in [1].

In 2012 Vinagre and Jorge noticed the need for forgetting mechanisms in rec-
ommender systems and proposed forgetting techniques for neighbourhood-based
methods [9]. They introduced two forgetting techniques: sliding window and fad-
ing factors, which are also often used in stream mining. They also considered
a recommender system as a stream-based algorithm and used those two tech-
niques to define which information was used for computing a similarity matrix.
According to the sliding window technique only a predefined number of the most
recent user sessions was used for calculating the similarity matrix making sure
that only the newest user feedback is considered for training a model. Their sec-
ond technique, fading factors, assigns lower weight to old data than to new ones
and, thereby, diminishes the importance of potentially outdated information. In
our method we also use the sliding window technique, there are, however, three
fundamental differences to Vinagre and Jorge: 1) Our method has been designed
for explicit feedback e.g. ratings, whereas the method in [9] was designed for
positive-only feedback. 2) We propose forgetting strategies for matrix factoriza-
tion algorithms as opposed to neighbourhood-based methods in [9]. 3) Vinagre
and Jorge apply forgetting on a stream of sessions of all users. Our forgetting
techniques are user-specific i.e. we consider ratings of one user as a stream and
apply a sliding window selectively on it. Vinagre and Jorge have shown that non-
incremental algorithms using forgetting have lower computational requirements
without a significant reduction of the predictive power, when compared to the
same kind of algorithms without forgetting.

Despite the popularity of the neighbourhood-based methods, the state-of-
the-art algorithms for recommenders are matrix factorization algorithms. They
became popular partially due to the Netflix competition, where they showed
a superior predictive performance, competitive computational complexity and
high extensibility. Koren et. al proposed a matrix factorization method based on
gradient descent [3], [4], where the decomposition of the original rating matrix
is computed iteratively by reducing prediction error on known ratings. In the

4 Pawel Matuszyk and Myra Spiliopoulou

method called ”TimeSVD++” Koren et al. incorporated time aspects accounting
for e.g. changes in user preferences. Their method, however, does not encompass
any forgetting strategy i.e. it always uses all available ratings no matter, if they
are still representative for users’ preferences. Additionally, some of the changes of
the environment of a recommender cannot be captured by time factors proposed
by Koren et. al. To this category of changes belong the abrupt, non-predictable
changes termed before as concept shift. Furthermore, the method by Koren et.
al is not incremental, therefore it cannot adapt to changes in real time.

An iterative matrix factorization method has been developed by Takács et.
al in [8]. They termed the method biased regularized incremental simultaneous
matrix factorization (BRISMF). The basic variant of this method is also batch-
based. Takács et. al, however, proposed an incremental variant of the algorithm
that also uses stochastic gradient descent. In this variant the model can be
adapted incrementally as new ratings arrive. The incremental updates are carried
out by fixating the latent item factors and performing further iterations of the
gradient descent on the user latent factors. This method still requires an initial
training and an eventual retraining of the item factors, but the latent user factors
remain always up to date. In our work we use the BRISMF algorithm and extend
it by forgetting techniques.

3 Method

Our method encompasses forgetting techniques for incremental matrix factor-
ization. We incorporated forgetting into the algorithm BRISMF by Takács et.
al [8]. The method is general and can be applied to any matrix factorization
algorithm based on stochastic gradient descent analogously. BRISMF is a batch
learning algorithm, the authors, however, proposed an incremental extension for
retraining user features (cf. Algorithm 2 in [8]). We adopted this extension to
create a forgetting, stream-based recommender. Our recommender system still
requires an initial training, which is the first of its two phases.

3.1 Two Phases of Our Method

Phase I - Initial Training creates latent user and items features using the ba-
sic BRISMF algorithm in its unchanged form [8]. It is a pre-phase for the actual
stream-based training. In that phase the rating matrix R is decomposed into a
product of two matrices R ≈ PQ, where P is a latent matrix containing user
features and Q contains latent item vectors. For calculating the decomposition
stochastic gradient descent (SGD) is used, which requires setting some param-
eters that we introduce in the following together with the respective notation.

As an input SGD takes a training rating matrix R and iterates over ratings
ru,i for all users u and items i. SGD performs multiple runs called epochs. We
estimate the optimal number of epochs in the initial training phase and use it
later in the second phase. The results of the initial phase are the matrices P

Selective Forgetting for Incremental MF in Recommender Systems 5

and Q. As pu we denote hereafter the latent user vector from the matrix P .
Analogously, qi is a latent item vector from the matrix Q. Those latent matrices
serve as input to our next phase. The vectors pu and qi are of dimensionality k,
which is set exogenously. In each iteration of SGD within one epoch the latent
features are adjusted by a value depending on the learning rate η according to
the following formulas [8]:

pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k) (1)

qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k) (2)

To avoid overfitting long latent vectors are penalized by a regularization term
controlled by the variable λ. As −→r u∗ we denote a vector of all ratings provided
by the user u. For further information on the initial algorithm we refer to [8].

Despite the incremental nature of SGD, this phase, as also the most of matrix
factorization algorithms, is a batch algorithm, since it uses a whole training set
at once and the evaluation is performed after the learning on the entire training
set has been finished. In our second phase evaluation and learning take place
incrementally same as e.g. in stream mining.

Phase II - Stream-based Learning After the initial training our algorithm
changes into a streaming mode, which is its main mode. From this time point
it adapts incrementally to new users’ feedback and to potential concept drift or
shift. Also the selective forgetting techniques are applied in this mode, where they
can affect the recommendations immediately. Differently from batch learning,
evaluation takes place iteratively before the learning of a new data instance, as
it is known from stream mining under the name ”prequential evaluation” [2].
We explain our evaluation settings more detailed in Section 4.

In Algorithm 1 is pseudo-code of our method, which is an extension and
modification of the algorithm presented in [8]. This code is executed at arrival
of a new rating, or after a predefined number n of ratings. A high value of n
results in a higher performance in terms of computation time, but also in a slower
adaptation to changes. A low n means that the model is updated frequently, but
the computation time is higher. For our experiments we always use n = 1.

The inputs of the algorithm are results of the initial phase and parameters
that we also defined in the previous subsection. When a new rating ru,i arrives,
the algorithm first makes a prediction r̂u,i for the rating, using the item and
user latent vectors trained so far. The deviation between r̂u,i and ru,i is then
used to update an evaluation measure (cf. line 4 in Algorithm 1). It is crucial
to perform an evaluation of the rating prediction first, before the algorithm uses
the rating for updating the model. Otherwise the separation of the training and
test datasets would be violated. In line 6 the new rating is added to the list of
ratings provided by the user u. From this list we remove the outdated ratings
using one of our forgetting strategies (cf. line 7). The forgetting strategies are
described in Section 3.2. In the line 9 SGD starts on the newly arrived rating.

6 Pawel Matuszyk and Myra Spiliopoulou

It uses the optimal number of epochs estimated in the initial training. Contrary
to the initial phase, here only user latent features are updated. For updating the
user features the SGD iterates over all ratings of the corresponding user that
remained after a forgetting technique has been applied. For the update of each
dimension k the formula in line 16 is used.

Algorithm 1 Incremental Learning with Forgetting

Input: ru,i, R, P,Q, η, k, λ
1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: r̂u,i = −→pu · −→qi //predict a rating for ru,i
4: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
5: −→r u∗ ← getUserRatings(R, u)
6: (−→r u∗).addRating(ru,i)
7: applyForgetting(−→r u∗) //old ratings removed
8: epoch = 0
9: while epoch < optimalNumberOfEpochs do

10: epoch++; //for all retained ratings
11: for all ru,i in −→r u∗ do
12: −→pu ← getLatentUserVector(P, u)
13: −→qi ← getLatentItemVector(Q, i)
14: predictionError = ru,i −−→pu · −→qi
15: for all latent dimensions k 6= 1 in −→pu do
16: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
17: end for
18: end for
19: end while

Our variant of the incremental BRISMF method has the same complexity as
the original, incremental BRISMF. In terms of computation time, it performs
even better, since the number of ratings that the SGD has to iterate over is
lower due to our forgetting technique. The memory consumption of our method
is, however, higher, since the forgetting is based on a sliding window (cf. Section
3.2) that has to be kept in the main memory.

3.2 Forgetting Techniques

Our two forgetting techniques are based on a sliding window over data instances
i.e. in our case over ratings. Ratings that enter the window are incorporated into
a model. Since the window has a fixed size, some data instances have to leave it,
when new ones are incorporated. Ratings that leave the window are forgotten
and their impact is removed from the model. The idea of sliding window has
been used in numerous stream mining algorithms, especially in a stream-based
classification e.g. in Hoeffding Trees. In stream mining the sliding window is,
however, defined over the entire stream. This approach has also been chosen

Selective Forgetting for Incremental MF in Recommender Systems 7

r u1 , i2,r u1 , i1,r u1 ,i3 ,r ux ,i1a)

r u1 , i2,r u1 , i1,r u1 ,i3

b)

r ux , i1

Website

Fig. 1: Conventional definition of a sliding window a) vs. a user-specific window b). In
case a) information on some users is forgotten entirely and no recommendations
are possible (e.g. for user ux). In case b) only users with too much information
are affected (e.g. u2). Ratings of new users, such as ux, are retained.

by Vinagre and Jorge in [9]. Our approach is user-specific i.e. a virtual sliding
window is defined for each user separately. Figure 1 illustrates this difference.

On the left side of the figure there is a website that generates streams of rat-
ings by different users. The upper part a) of the figure represents a conventional
definition of a sliding window (blue frame) over an entire stream. In this case
all ratings are considered as one stream. In our example with a window of size
2 this means that in case a) the model contains the ratings ru1,i2 and ru1,i1. All
remaining ratings that left the window have been removed from the model. This
also means that all ratings by the user ux have been forgotten. Consequently,
due to the cold start problem, no recommendations for that user can be created.
Case b) represents our approach. Here each user has his/her own window. In this
case all ratings of the user ux are retained. Only users, who provided more rat-
ings than the window can fit, are affected by the forgetting (e.g. u1). User with
very little information are retained entirely. Due to the user-specific forgetting
the cold start problem is not exacerbated. The size of the window can be de-
fined in multiple ways. We propose two implementations of the applyForgetting()
function from Algorithm 1, but further definitions are also possible.

Instance-based Forgetting The pseudo code in Algorithm 2 represents a
simple forgetting function based on the window size w. In Algorithm 1 new
ratings are added into the list of user’s ratings ru,∗. If due to that the window
grows above the predefined size, the oldest rating is removed as many times as
needed to reduce it back to the size w.

Time-based Forgetting In certain application scenarios it is reasonable to
define current preferences with respect to time. For instance, we can assume that
after a few years preferences of a user have changed. In very volatile applications
a time span of one user session might be reasonable. Algorithm 3 implements a

8 Pawel Matuszyk and Myra Spiliopoulou

Algorithm 2 applyForgetting(ru,∗) - Instance-based Forgetting

Input: ru,∗ a list of ratings by user u sorted w.r.t. time, w - window size
1: while |ru,∗| > w do
2: removeFirstElement(ru,∗)
3: end while

forgetting function that considers a threshold a for the age of user’s feedback.
In this implementation the complexity of forgetting is less than O(w), where w
is size of the window, since it does not require a scan over the entire window.

Algorithm 3 applyForgetting(ru,∗) - Time-based Forgetting

Input: ru,∗ a list of ratings by user u sorted w.r.t. time, a - age threshold
1: forgettingApplied ← true
2: while forgettingApplied == true do
3: oldestElement ← getFirstElement(ru,∗) //the oldest rating
4: if age(oldestElement) > a then
5: removeFirstElement(ru,∗)
6: forgettingApplied ← true
7: else
8: forgettingApplied ← false
9: end if

10: end while

4 Evaluation Setting

We propose a new evaluation protocol for recommender systems in a streaming
environment. Since our method requires an initial training, the environment
of our recommender is not entirely a streaming environment. The evaluation
protocol should take the change from the batch mode (for initial training) into
streaming mode (the actual method) into account.

4.1 Evaluation Protocol

Figure 2 visualizes two modes of our method and how a dataset is split between
them. The initial training starts in a batch mode, which corresponds to the part
1) in the Figure (batch train). For this part we use 30% of the dataset. The ratios
are example values that we used in our experiments, but they can be adjusted to
the idiosyncrasies of different datasets. The gradient descent used in the initial
training iterates over instances of this dataset to adjust latent features. The
adjustments made in one epoch of SGD are then evaluated on the batch test
dataset (part 2). After evaluation of one epoch the algorithm decides, if further

Selective Forgetting for Incremental MF in Recommender Systems 9

30% 20% 50%

1) Batch Train 3) Stream Test + Train
2) Batch Test +
 Stream Train

Batch Stream

Train Train

Test Test

Colour legend

Fig. 2: Visualization of two modes of our method and split between the training and
test datasets. The split ratios are example values.

epochs are needed. After the initial phase is finished the latent features serve as
input for the streaming mode.

For the stream based evaluation we use the setting proposed by Gama et
al. called prequential evaluation [2]. In this setting ratings arrive sequentially in
a stream. To keep the separation of a test and training dataset every rating is
first predicted and the prediction is evaluated before it is used for training. This
setting corresponds to part 3) of our Figure. Two different colours symbolize
that this part is used both for training and evaluation. This also applies to
part 2) of the figure. Since the latent features have been trained on part 1) and
the streaming mode starts in part 3) this would mean a temporal gap in the
training set. Since temporal aspects play a big role in forgetting we should avoid
it. Therefore, we also train the latent features incrementally on part 2). Since this
part has been used for evaluation of the batch mode already, we do not evaluate
the incremental model on it. The incremental evaluation starts on part 3).

The incremental setting also poses an additional problem. In a stream new
users can occur, for whom no latent features in the batch mode have been trained.
In our experiments we excluded those users. The problem of inclusion of new
users into a model is subject to our future work.

4.2 Evaluation Measure - slidingRMSE

A popular evaluation measure is the root mean squared error (RMSE), which is
based on the deviation between a predicted and real rating [7]:

RMSE =

√√√√ 1

|T |
∑

(u,i)∈T

(ru,i − r̂u,i)2 (3)

where T is a test set. This evaluation measure was developed for batch algo-
rithms. It is a static measure that does not allow to investigate, how the per-
formance of a model changes over time. We propose slidingRMSE - a modified
version of RMSE that is more appropriate for evaluating stream recommenders.
The formula for calculating slidingRMSE is the same as for RMSE, but the test
set T is different. slidingRMSE is not calculated over the entire test set, but

10 Pawel Matuszyk and Myra Spiliopoulou

only over a sliding window of the last n instances. Prediction error of ratings
that enter the sliding window are added to the squared sum of prediction errors
and the ones that leave it are subtracted. The size of the window n is indepen-
dent from the window size for forgetting techniques. A small n allows to capture
short-lived effects, but it also reveals a high variance. A high value of n reduces
the variance, but it also makes short-lived phenomena not visible. For our ex-
periments we use n = 500. slidingRMSE can be calculated at any timepoint in
a stream, therefore, is is possible to evaluate how RMSE changes over time.

Since we are interested in measuring how the forgetting techniques affect
the prediction accuracy, we measure the performance of an algorithm with and
without forgetting, so that the difference can be explained only by application
of our forgetting techniques. Forgetting is applied only on a subset of users, who
have sufficiently many ratings. Consequently, all other users are treated equally
by both variants of the algorithm. Thus, we measure slidingRMSE only on those
users, who were treated differently by the forgetting and non-forgetting variants.

5 Experiments

We performed our experiments on four real datasets: Movielens 1M1, Movie-
lens 100k, Netflix (a random sample of 1000 users) and Epinions (extended)
[5]. The choice of datasets was limited by the requirement of our method to
have timestamped data. In all experiments we used our modified version of the
BRISMF algorithm [8] with and without forgetting. Since BRISMF requires a
few parameters to be set, on each dataset we performed a grid search over the pa-
rameter space to find the approximately optimal parameter setting. In Figure 3
we present the results of the best parameter settings found by the grid search on
each dataset. As an evaluation measure we used slidingRMSE (lower values are
better). The left part of the diagrams represents the slidingRMSE measured over
time. The red curves represent our method with forgetting technique denoted
in the legend. ”Last20” stands for an instance-based forgetting, when only 20
last ratings of a user are retained. The best results were achieved constantly by
the instance-based forgetting. Therefore, the time-based forgetting is not present
here. Blue curves represent the method without forgetting. The box plots on the
right side are centred around the median of slidingRMSE. They visualize the
distribution of slidingRMSE in a simplified way. Please, consider that box plots

1 http://www.movielens.org/

Dataset ML1M ML100k Epinions Netflix

avg. slidingRMSE - Forgetting 0.9151 1.0077 0.6627 0.9138

avg. slidingRMSE - NO Forgetting 1.1059 1.0364 0.8991 1.0162

Table 1: Average values of slidingRMSE for each dataset (lower values are better). Our
forgetting strategy outperforms the non-forgetting strategy on all datasets.

Selective Forgetting for Incremental MF in Recommender Systems 11

0.8

1.0

1.2

1.4

0 10000 20000 30000 40000
Timepoint (Data Instances)

sl
id

in
gR

M
S

E

f nf
Forgetting

Forgetting
strategies

Last20
No Forgetting

(a) Movielens 1M

0.8

0.9

1.0

1.1

1.2

0 2000 4000
Timepoint (Data Instances)

sl
id

in
gR

M
S

E

f nf
Forgetting

Forgetting
strategies

Last20
No Forgetting

(b) Movielens 100k

0.8

0.9

1.0

1.1

1.2

0 10000 20000 30000
Timepoint (Data Instances)

sl
id

in
gR

M
S

E

f nf
Forgetting

Forgetting
strategies

Last15
No Forgetting

(c) Netflix (random sample of 1000 users)

0.50

0.75

1.00

1.25

1.50

0 50000 100000 150000 200000
Timepoint (Data Instances)

sl
id

in
gR

M
S

E

f nf
Forgetting

Forgetting
strategies

Last15
No Forgetting

(d) Epinions extended

Fig. 3: SlidingRMSE on four real datasets with and without forgetting (lower values
are better). Application of forgetting techniques yields an improvement on all
datasets at nearly all timepoints.

12 Pawel Matuszyk and Myra Spiliopoulou

are normally used for visualizing independent observations, this is, however, not
the case here. From Figure 3 we see that our method with forgetting dominates
the non-forgetting strategy on all datasets at nearly all timepoints. In Table 1
we also present numeric, averaged values of slidingRMSE for each dataset.

6 Conclusions

In this work we investigated, whether selective forgetting techniques for matrix
factorization improve the quality of recommendations. We proposed two tech-
niques, an instance-based and time-based forgetting, and incorporated them into
a modified version of the BRISMF algorithm. In contrast to existing work, our
approach is based on a user-specific sliding window and not on a window defined
over an entire stream. This has an advantage of selectively forgetting information
about users, who provided enough feedback.

We designed a new evaluation protocol for stream-based recommenders that
also takes the initial training and temporal aspects into account. We introduced
an evaluation measure, slidingRMSE, that is more appropriate for evaluating
recommender systems over time and capturing also short-lived phenomena. In
experiments on real datasets we have shown that a method that uses our for-
getting techniques, outperforms the non-forgetting strategy on all datasets at
nearly all timepoints. This also proves that user preferences and perception of
items change over time. We have shown that it is beneficial to forget the outdated
user feedback despite the extreme data sparsity known in recommenders.

In our future work we plan to develop more sophisticated forgetting strate-
gies for recommender systems. Our immediate next step is also a research on a
performant inclusion of new users into an existing, incremental model.

References

1. C. Desrosiers and G. Karypis. A Comprehensive Survey of Neighborhood-based
Recommendation Methods. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 107–144. Springer US.

2. J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of stream learning
algorithms. In KDD, 2009.

3. Y. Koren. Collaborative filtering with temporal dynamics. In KDD, 2009.
4. Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recom-

mender Systems. Computer, 42(8):30–37, Aug. 2009.
5. P. Massa and P. Avesani. Trust-aware bootstrapping of recommender systems. In

ECAI Workshop on Recommender Systems, pages 29–33. Citeseer, 2006.
6. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering

recommendation algorithms. In WWW, WWW ’01, 2001.
7. G. Shani and A. Gunawardana. Evaluating Recommendation Systems. In F. Ricci,

L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook.
8. G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable Collaborative Filtering

Approaches for Large Recommender Systems. J. Mach. Learn. Res., 10, 2009.
9. J. Vinagre and A. M. Jorge. Forgetting mechanisms for scalable collaborative fil-

tering. Journal of the Brazilian Computer Society, 18(4):271–282, 2012.

