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Abstract Forgetting is often considered a malfunction of intelligent agents, how-
ever, in a changing world forgetting has an essential advantage. It provides means
of adaptation to changes by removing effects of obsolete (not necessarily old) infor-
mation from models. This also applies to intelligent systems, such as recommender
systems, which learn users’ preferences and predict future items of interest.

In this work we present unsupervised forgetting techniques that make recom-
mender systems adapt to changes of users’ preferences over time. We propose
eleven techniques that select obsolete information and three algorithms that en-
force the forgetting in different ways. In our evaluation on real world datasets
we show that forgetting obsolete information significantly improves predictive
power of recommender systems.

Keywords Recommender Systems · Forgetting Techniques · Matrix Factoriza-
tion · Data Stream Mining · Machine Learning

1 Introduction

Recommender systems learn users’ preferences based on past data and predict
future items of interest. A challenge in learning users’ preferences lies in their

P. Matuszyk · M. Spiliopoulou
Knowledge Management and Discovery Lab
Otto von Guericke University,
Magdeburg, Germany
E-mail: {pawel.matuszyk | myra}@iti.cs.uni-magdeburg.de

J. Vinagre · A. M. Jorge
FCUP - Universidade do Porto,
LIAAD - INESC TEC,
Porto, Portugal
E-mail: jnsilva@inesctec.pt, amjorge@fc.up.pt

J. Gama
FEP - Universidade do Porto,
LIAAD - INESC TEC,
Porto, Portugal
E-mail: jgama@fep.up.pt

This is an author's version of the article. 
The final publication is available at http://link.springer.com
https://link.springer.com/article/10.1007/s1011501710918



2 Pawel Matuszyk et al.

volatility. Preferences are not static in their nature - they undergo changes, i.e.
concept drift, from the perspective of a predictive algorithm.

Adaptation to concept drift is an important aspect of every learning system
that is a part of a changing environment. The fact that the environment of a
recommender system (e.g. users’ preferences) changes over time has been shown
in past research [18,17,37,20,19]. However, there are two complementary ways of
adapting to changes:

– incorporating new information into a model
– forgetting the obsolete information

The first option has been subject to much of recent research e.g. in the work
on incremental matrix factorization [36,26,38,32,22]. Incorporating new informa-
tion into models is used by stream-based methods. They work with the realistic
assumption that users’ feedback arrives one after another in a stream of ratings.
Their biggest advantage is that they can incorporate new information in real time
without discarding the entire model.

However, we argue that incorporating new information alone is not sufficient as
an adaptation mechanism. Since users’ preferences change over time, some of the
users’ feedback does not reflect the current preferences any more. Considering this
obsolete feedback would distort users’ profiles and negatively impact the predictive
power of our models.

Therefore, next to incorporating new information, in this work we investigate
the second way of adaptation - forgetting methods. They forget in a selective and
controlled way to remove the impact of the obsolete information. These methods
encompass selection strategies for finding the obsolete information (cf. Sec. 3) and
algorithms implementing forgetting of selected information i.e. removing the effect
of a rating from a model (cf. Sec. 4). Please note that an obsolete information does
not need to be old. For instance, information about a user, who buys a present for
someone else, is obsolete to this user’s profile, even if it is new.

Our goal is not to show that our algorithm is better than a given other algo-
rithm. Instead, we aim to show that selective forgetting of information improves the
quality of recommendations as compared to no forgetting. Therefore, ”no forget-
ting” is our main comparison baseline, next to other forgetting strategies existing
in the literature already (cf. Sec. 2). In our experiments with explicit rating feed-
back and also with positive-only feedback, we show that forgetting significantly
improves predictive performance of stream-based recommender systems, as
compared to the first way of adaptation mechanism alone (incorporating new in-
formation with no forgetting).

As a representative of stream-based recommender systems we use an incre-
mental matrix factorization algorithm BRISMF [36], which has the first adaptation
mechanism already. Matrix factorization algorithms are considered state-of-the-art
in recommender systems. While they belong to the class of collaborative filtering
algorithms, they are not based on the notion of neighbourhood and similarity.
We extended the BRISMF algorithm by our forgetting techniques. Since matrix
factorization in recommender systems is an active research field, there are numer-
ous recommendation algorithms based on it. Those algorithms encompass several
extensions, e.g. for implicit feedback [13], time aspects (different than forgetting)
[17,18], semi-supervised learning [26], active learning [16], etc. Therefore, it is not
possible to test all of them in combination with our forgetting strategies. Thus,
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we use a possibly generic representative of the matrix factorization algorithms.
Using a very specific extension of a matrix factorization algorithm would limit the
generality of our results. By using a generic algorithm, such as BRISMF, whose
internal working is common to nearly all matrix factorization algorithms in rec-
ommender systems,we ensure that our methods and results can be transferred to
other algorithms.

Forgetting obsolete information has an additional advantage of allowing users
to decide which information should be forgotten. From the perspective of data
privacy this is highly desirable. A user could decide to exclude an item from
her/his recommendation profile. This could not be done by a simple deletion
of the item from the user record, since the impact of this item on the user profile
would still reside in the user’s preference model. Even though shared parameters of
matrix factorization models are adjusted when incremental learning is performed
and the relative importance of old information decreases as new information comes
in, the impact of obsolete information still remains in the model. Our forgetting
techniques solve this problem by discarding the impact of a rating from preference
models.

In summary, our contributions are as follows:

– eleven forgetting strategies of two types and three alternative algorithms im-
plementing them

– an evaluation protocol, which incorporates significance testing and an incre-
mental measure of recall

– insights on forgetting with positive-only feedback and on rating feedback
– significant improvement of predictive power of recommender systems on

seven out of eight datasets

This publication extends our work [25,27], where we presented seven forgetting
strategies and in [27] we also used the incremental recall measure. Here, in addition
to our previous work, we propose four new forgetting strategies. We also formalize
them and divide them into two categories with respect to their behaviour. We also
propose two new algorithms that enforce forgetting on a stream and compare them
with the remaining one from our previous work. In this work we also focus on the
complexity of the algorithms. One of the algorithms is an approximative algorithm
that shows lower complexity, while maintaining a similar level of quality. Further-
more, we introduce a new evaluation protocol that includes significance testing on
streams and also considers runtime of algorithms. The proposed algorithms have
also been extended by the ability to add new dimensions to the matrix. Due to new
algorithms and evaluation protocol we executed more than 1040 new experiments.

The structure of this paper is as follows. In the next section we discuss related
work. Sec. 3 explains our forgetting strategies for selecting obsolete information.
In Sec. 4 we describe three algorithms that enforce forgetting of selected instances
in different ways. Evaluation protocol and measures are mentioned in Sec. 5. In
Sec. 6 we report our results. Finally, we conclude our work and discuss remaining
issues in Sec. 7.

2 Related Work

In real world systems, data used by recommender systems has all the characteris-
tics of a data stream. Data streams arrive on-line, at unpredictable order and rate,
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and they are potentially unbounded [1]. Once a data element is processed it must
be discarded or archived, and subsequent access to past data gets increasingly
expensive. Algorithms that learn from data streams should process data in one
pass, at least as fast as data elements arrive, and memory consumption should to
be independent from the number of data points [8]. Although recommendation is
seldom approached as a data stream mining problem, the following contributions
must be pointed out. Two of them apply generic data stream mining algorithms in
recommender systems. In [21], Li et al. propose an approach to drifting preferences
of individual users using the CVFDT algorithm [15]. This is a popular classifica-
tion algorithm for high speed data streams. The CVFDT algorithm is used to
build a decision tree for each item in the dataset, given the ratings of other highly
correlated items. The ratings given by users to these correlated items are used
to predict the ratings for the target item. The mechanics of CVFDT provides
automatic adjustment to drifts in user interests, avoiding accuracy degradation.
In [29] Nasraoui et al. use the TECHNO-STREAMS stream clustering algorithm
[30], using a sliding window through user sessions to compute a clustering-based
recommendation model.

Another possible approach is to adapt existing collaborative filtering algo-
rithms to learn from data streams. One key aspect of most data stream mining
algorithms is that they build models incrementally. Neighborhood-based incremen-
tal learning from ratings data for recommendation has been introduced in [31], and
adapted for positive-only feedback in [28]. These two contributions use incremen-
tal cache structures to incrementally update similarities between users or between
items as new ratings become available. Incremental matrix factorization for rec-
ommendation has been first studied in [33] using the fold-in method for Singular
Value Decomposition (SVD) [2]. This is a method used in information retrieval to
add new documents to large document-term matrices. However, because it violates
the orthogonality required to maintain an accurate SVD, the decomposition still
needs to be recomputed periodically from scratch. State-of-the-art factorization
for recommender systems relies on optimization methods, mostly Stochastic Gra-
dient Descent (SGD) [32]. Incremental versions of SGD based methods have been
studied in [36,22] for ratings and in [38] for positive-only data.

Forgetting past data is a model maintenance strategy frequently used in data
stream mining. The underlying assumption is that some data points are more
representative than others of the concept(s) captured by the algorithm. In recom-
mender systems, forgetting is introduced by Koychev in a content-based algorithm
[19]. The technique assigns higher weights to recent observations, forgetting past
data gradually. This way, the algorithm is able to recover faster from changes in the
data, such as user preference drifts. A similar approach is used with neighborhood-
based collaborative filtering by Ding and Li in [7]: the rating prediction for an item
is calculated using a time decay function over the ratings given to similar items.
In practice, recently rated items have a higher weight than those rated longer ago.
In [23], Liu et al. use the same strategy, additionally introducing another time de-
cay function in the similarity computation, causing items rated closely together in
time to be more similar than those rated far apart in time. Another contribution
is made by Vinagre and Jorge in [37]. The authors use two different forgetting
strategies with neighbourhood-based algorithms for positive-only data. Forgetting
is achieved either abruptly, using a fixed-size sliding window over data and repeat-
edly training the algorithm with data in the window, or gradually, using a decay
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function in the similarity calculation causing older items to be less relevant. How-
ever, these techniques are only effective in the presence of sudden changes with a
high magnitude global impact, i.e. for all users, and do not account for more subtle
and gradual changes that occur on the individual users’ level. In our experiments
we also compare to those strategies.

In [18] Koren modelled users in a dynamic way, i.e. he tried to capture changes
in latent user vectors by using linear regression and splines. However, his method
was not able to recognize and forget obsolete information. Additionally, unlike our
method, Koren’s method is not able to work on streams of ratings. In 2014 Sun
et al. introduced collaborative Kalman filtering [35]. This method also attempts
to model changes in users’ preferences, but similarly to Koren’s method, it is
not designed for streams of data and it does not forget any information. Chua
et al. modelled temporal adoptions using dynamic matrix factorization [5]. Their
approach is not stream-based, but works on chunks of data and combines models
of single chunks using a linear dynamic system. Similarly to Sun et al., in [5] the
authors also used Kalman filters.

Forgetting for incremental matrix factorization had not been studied before
the work by Matuszyk and Spiliopoulou in [25] and our work in [27]. For readers
unfamiliar with the concept of matrix factorization in recommender systems we
refer to the seminal work by Takács et al. [36] and to the work by Koren et al. [17].
Due to space constraints we cannot explain those concepts here.

3 Forgetting Strategies

In this section we discuss how to select information that should be forgotten. We
introduce the term of forgetting strategies as methods for selecting this obsolete
information. They work in an unsupervised way, since there is no ground truth
determining when a rating becomes obsolete.

We divide our strategies into two categories based on their output. The first
category is rating-based forgetting (cf. Sec. 3.1). As the name suggests, all
strategies of this type take a user-specific list of ratings as input and decide which
ratings should be forgotten. Data returned by those strategies is a filtered list
of ratings of a user. Forgetting strategies of the second type are based on latent
factors from the matrix factorization model. The latent-factor-based strategies
(cf. Sec. 3.2) modify a latent factor of a user or of an item in a way that lowers
the impact of past ratings.

In total we present 11 forgetting strategies. The description of strategies in
Secs. 3.1.1 - 3.1.4 and 3.2.1 - 3.2.3 comes from our work in [27].

3.1 Rating-based Forgetting

This category of forgetting strategies operates on sets of users’ ratings. We define
R(u) as a set of ratings provided by the user u. Formally, a rating-based forgetting
strategy is a function f(R(u)):

f : R(u)→ R(u)′ (1)
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where R(u)′ ⊆ R(u). Furthermore, for each user we define a threshold of n ratings
a user must have, before forgetting is applied. This threshold ensures that no
new users are affected by forgetting and that no users or items are forgotten
completely. Therefore, it is not possible that a badly chosen forgetting strategy
forgets everything and is unable to make recommendations. In our experiments
we use n = 5.

3.1.1 Sensitivity-based Forgetting

As the name suggests this strategy is based on sensitivity analysis. We analyse how
much a latent user vector pu changes after including a new rating of this user ru,i
into a model. A latent user vector should always reflect user’s preferences. With
a new rating ru,i we gain more information about a user and we can adjust the
model of his/her preferences (the latent vector pu) accordingly. If the new rating
is consistent with the preferences that we know so far of this particular user, the
change of the latent vector should be minimal. However, if we observe that the
latent vector of this user changed dramatically after training on the new rating,
then this indicates that the new rating is not consistent with the past preferences
of this user. Thus, we forget this rating, i.e. we do not update the user’s latent
vector using this rating, since it does not fit to the rest of user’s preferences.

In real life recommenders this occurs frequently, e.g. when users buy items for
other people as presents, or when multiple persons share one account. Those items
are outliers with respect to preferences observed so far. Learning model based on
those outliers distorts the image of user’s preferences.

In order to identify those outlier ratings, we first store the latent user vector
at time point t, denoted hereafter as ptu. Then, we simulate our incremental train-
ing on the new rating ru,i without making the changes permanent. We obtain
an updated latent user vector pt+1

u . Our next step is then calculating a squared
difference between those two latent vectors using the following formula:

∆pu =
k∑
i=0

(pt+1
u,i − p

t
u,i)

2 (2)

Furthermore, for each user we store and update incrementally at each time
point the standard deviation of the squared difference. The notation x stands for
a mean value of vector x and SD(x) is standard deviation of this vector. If the
following inequality is true, then it indicates that the new rating ru,i is an outlier:

∆pu > ∆pu + α · SD(∆pu) (3)

Where α is a parameter that controls the sensitivity of the forgetting strategy. It
is specific for every dataset and has to be determined experimentally.

3.1.2 Global Sensitivity-based Forgetting

Similarly to the previous strategy, Global Sensitivity-based Forgetting is also based
on sensitivity analysis. However, in contrast to Sensitivity-based Forgetting, this
strategy does not store the standard deviation of squared differences of latent
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vectors separately for each user but rather globally. Formally, it means that the
inequality (3) needs to be changed into:

∆pu > ∆+ α · SD(∆) (4)

Where ∆ is a squared difference of latent user vectors before and after including
a new rating for all users.

3.1.3 Last N Retention

To the category of rating-based forgetting we also count the Last N Retention
strategy by Matuszyk and Spiliopoulou [25]. This forgetting strategy uses sliding
window, which often finds an application in stream mining and adaptive algo-
rithms. Here however, a sliding window is defined for each user separately. Last-
NRetention means that the last N ratings in a stream of a user are retained and all
remaining ratings are forgotten. If a user has fewer ratings than N , then forgetting
will not be applied onto this user.

3.1.4 Recent N Retention

This forgetting strategy is also based on a user-specific sliding window [25]. How-
ever, here the size of a window is not defined in terms of ratings, but in terms
of time. Therefore, unlike last N retention it considers the time that has passed
between providing ratings. If N = 3days, then only ratings from the last three
days are retained and all the remaining ones will be forgotten. This strategy can
be also set up to use only ratings from e.g. the last session. In contrast to the Last
N Retention, this strategy allows to define a lifetime of a rating, which is especially
beneficial in highly dynamic environments, such as news recommendations.

3.1.5 Recall-based Change Detection

In many applications a change of preferences takes place gradually. However, there
are applications where a change can happen abruptly and without prior indication.
For instance, a person who becomes a parent is likely to start preferring items
suitable for children. A recommender system that adapts gradually is not able to
capture this abrupt change. Consequently, the importance of these new preferences
will be underestimated for a long period of time. Therefore, we propose a forgetting
strategy that detects a change in preferences and forgets all ratings from before the
change. This is equivalent to resetting a single profile of the affected user without
discarding the entire model.

In recall-based change detection, incremental recall (or a different incremental
quality measure) for each user is monitored. A high drop in the quality measure
indicates a change of preferences.

In more quantitative terms, let incremental recall for user u at timepoint t be
denoted as incrRecalltu. A change is detected, if the following inequality is true:

incrRecalltu < incrRecallu − α · SD(incrRecallu) (5)

i.e. when the current recall of a user is lower than this user’s mean recall by at
least α·SD(incrRecallu). The parameter α controls the sensitivity of the detector.
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3.1.6 Sensitivity-based Change Detection

Similarly to the previous forgetting strategy, this one is also a change detector.
We assume that, if incorporating a new rating from the stream provided by a user
changes the underlying user’s model dramatically, then this new rating does not
fit into the old model. Consequently, we conclude that the user’s preferences have
changed.

To express the relative change of a user’s model over time we use the notion
of local model sensitivity and the formula 2. Let ∆tpu be the change of user’s
model after incorporating a new rating at timepoint t. A change is detected, if the
following inequality holds:

∆tpu > ∆pu + α · SD(∆pu) (6)

i.e. when the change to the current model is higher than the standard deviation
of all changes of this user multiplied with a control parameter α.

This strategy is similar to Sensitivity-based Forgetting, because it also uses the
idea of an outlier-rating that does not fit into the learnt model. However, the key
difference is that, here, we conclude that it is the model learnt so far that should
be forgotten due to a concept shift and not the single outlier-rating.

3.2 Latent Factor Forgetting

Latent factor forgetting is the second type of our forgetting strategies. Unlike
rating-based forgetting, this type of strategies operates directly on preference mod-
els and not on the ratings. In matrix factorization, preference models have form of
latent user vectors, denoted as pu, or latent item vectors, denoted as qi. This type
of forgetting is triggered when a new rating of the corresponding user u towards
item i has been observed in a stream.

Formally, a latent factor forgetting strategy is a linear transformation of a
latent user vector (cf. Eq. 7) or of a latent item vector (cf. Eq. 8):

−−→
pt+1
u = γ ·

−→
ptu + β (7)

−−→
qt+1
i = γ ·

−→
qti + β (8)

The parameters γ and β are dictated by the strategies described in the following
subsections. Since those strategies transform latent vectors, it is also not possible
that users or items are forgotten completely. This could happen only if γ and β
are equal to 0, which we do not allow in the following strategies.

3.2.1 Forgetting Unpopular Items

In this forgetting strategy unpopular items are penalized. Latent item vectors are
multiplied with a value that is lower for unpopular items to decrease their impor-
tance in the prediction of interesting items. Formally, this strategy is expressed by
the following formula:

−−→
qt+1
i = (−α−|R(i)| + 1) ·

−→
qti (9)
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R(i) is the set of ratings for item i. α is a parameter that controls, how much
the latent item vector is penalized. (−α−|R(i)|+ 1) is an exponential function that
takes low values for items with few ratings (for α values > 1). Additionally, this
function has an advantage of being limited to value range of [0, 1), for α > 1.

3.2.2 User Factor Fading

User Factor Fading is similar to using fading factors in stream mining. In this
strategy latent user factors are multiplied by a constant α ∈ (0, 1]

−−→
pt+1
u = α ·

−→
ptu (10)

The lower is this constant, the higher is the effect of forgetting and the less
important are the past user’s preferences.

3.2.3 SD-based User Factor Fading

As in user factor fading, this strategy alters latent user vectors. Hoverer, the mul-
tiplier here is not a constant but it depends on the volatility of user’s factors. The
assumption behind this strategy is that highly volatile latent vectors (the ones
that change a lot), are unstable. Therefore, forgetting should be increased until
the latent vectors stabilize.

Similarly to sensitivity-based forgetting, in this strategy we measure how much
the latent user factor changed compared to the previous time point. We calculate
again the squared difference between pt+1

u and ptu and denote it as ∆pu (cf. Equa-
tion 2). Subsequently, we use the standard deviation of ∆pu in an exponential
function:

−−→
pt+1
u = α−SD(∆pu ) ·

−→
ptu (11)

For high standard deviation of ∆pu the exponential function takes low val-
ues, penalizing unstable user vectors. The parameter α controls the extent of the
penalty. For α > 1 this function always takes values in the range [0, 1).

3.2.4 Recall-based User Factor Fading

As in the previous strategy, users’ latent vectors are also multiplied with a weight,
which, here is based on user-specific recall. The idea is as follows: if a prediction
model performs poorly for a user in terms of incremental recall, this forgetting
strategy assumes that preferences of this user are changing. Therefore, forgetting
should be amplified. In contrast, if the performance of the model is high, then
forgetting is suppressed, so that a stable and well functioning model is not altered
by the forgetting. To model this strategy we use the following formula:

−−→
pt+1
u = (−α−incrRecall

t
u + 1) ·

−→
ptu (12)

The exponential term −α−incrRecall
t
u + 1 takes high values for high recall

values (for α > 1). Therefore, if a model performs well, this term is close to 1,
which makes the effect of the forgetting strategy low. Otherwise, a lower value of
the exponential function increases the forgetting rate.
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3.2.5 Forgetting Popular Items

This strategy is opposite to the one presented in Sec. 3.2.1. Here, popular items
are penalized, so that their impact on the model is reduced. Forgetting popular
items can be used to decrease the impact of mainstream products onto a preference
model.

To achieve that, an exponential function is used that decreases the multiplier
of the latent item vector (for α > 1), when an item was rated by many users.

−−→
qt+1
i = α−|R(i)| ·

−→
qti (13)

4 Enforcing Forgetting on a Stream of Ratings

Thus far, we have described how to select information that should be forgotten.
In this section we discuss how the forgetting is implemented, i.e. how an impact of
selected information can be removed from a model. We propose three alternative
implementations. In those implementations we follow the stream setting. In this
setting a model is updated incrementally. With every change of a model (adding
or forgetting information) a preference model is updated locally. In matrix fac-
torization algorithms adding or forgetting a rating eventually affects many latent
features, as its influence can propagate onto other items and users. To account
for that, the preference model would have to be re-learnt from the scratch every
time a rating is added or forgotten. This, however, is not feasible due to excessive
computation time and real-time requirements that are often imposed onto stream
learning algorithms. Therefore, to make stream-mining algorithms applicable in
real-world scenarios, it is a common practice to update only parts of a model.

This strategy of local updates is applied not only in recommender systems,
as e.g. in [36], but also in many other stream mining algorithms. Hoeffding trees,
such as CVFDT [14], and stream-based clustering algorithms, such as [3,30], ap-
ply the same strategy of partial updates when new data instances are observed
(cf. also a recent survey on stream-mining [9]). CVFDT, for example, does not
relearn the entire tree, when a new data instance is observed, but it adjusts a
model only locally. We use the same strategy in our forgetting methods. Only the
latent features that are directly affected, are updated locally without relearning
the entire model. First however, we describe our baseline algorithm that does not
use forgetting techniques. We use this algorithm in all our implementations and
also in experiments as a comparison baseline.

4.1 Baseline Algorithm

We extend a state-of-the-art matrix factorization algorithm BRISMF (biased regu-
larized incremental simultaneous matrix factorization) by Takács et al. [36]. Parts
of the baseline description come from our previous work [27].

BRISMF is a batch method, however, Tákacs et al. also proposed an algorithm
for retraining latent users features (cf. Alg. 2. in [36]) that can be used as a stream-
based algorithm. Latent user features are updated as new observations arrive in a
stream, ideally in real time. Since item features are not updated online (as dictated
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by Tákacs et al. [36]), the method requires an initial phase, in which the latent
item features are trained. We adopted this procedure also in our extension of this
algorithm.

4.1.1 Initial Phase

Similarly to [25] and [36], in this phase we use Stochastic Gradient Descent (SGD)
to decompose the user-item-rating matrix R into two matrices of latent factors
R ≈ P · Q, where P is the latent user matrix and Q the latent item matrix
with elements pu,k and qi,k respectively. k is an index of the corresponding latent
factor. In every iteration of SGD we use the following formulas to update latent
factors [36]:

pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k) (14)

qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k) (15)

Where η is a learn rate of the SGD and λ is a regularization parameter that
prevents SGD from overfitting. k stands for the number of latent dimensions.

4.1.2 Online Phase

Once the initial phase is finished the online phase is started. Here, evaluation and
prediction tasks run in parallel (cf. Sec. 5 for more information on the evaluation
setting). With every new rating arriving in a data stream the corresponding latent
user factor is updated.

The pseudo code showing our extended incremental training approach is pre-
sented in Alg. 1. The algorithm takes as input the original rating matrix R,
two factor matrices P and Q learnt in the initial phase and the aforementioned
parameters required by the SGD. ru,i is most recent rating in a data stream
that the algorithm uses to update the preference model, i.e. the latent user vec-
tor −→pu. The update is carried out by performing further iterations of SGD us-
ing the new rating. optimalNumberOfEpochs is determined during the initial
phase. The complexity of updating a model with one rating is O(E), where E =
optimalNumberOfEpochs.

In the pseudo code two of our extensions to the BRISMF algorithm are visible
(cf. line 3 in Alg. 1 and Alg. 2):

– extending dimensions of the matrix
– different initialization of new dimensions

Extending dimensions of the matrix is an essential feature for stream-based
algorithms. In a stream new users and items are introduced into the system fre-
quently. Those users and items do not appear in the user/item matrix from the
training phase of the algorithm. In order to make predictions for those users we
extend the original matrix by new rows or columns. In experiments with offline
datasets this extension allows to reduce the number of missing predictions consid-
erably.

Our second extension regards initialization of new dimensions in the matrix.
According to Takács et al. [36] latent matrices are initialized with small random
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Algorithm 1 Incremental Learning - Baseline
Input: ru,i, R, P,Q
Parameters: η, k, λ, optimalNumberOfEpochs

1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(−→pu,−→qi , P,Q,R)
4: r̂u,i = −→pu · −→qi //predict a rating for ru,i
5: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
6: R.storeRating(ru,i)
7: epoch = 0
8: while epoch < optimalNumberOfEpochs do
9: epoch++

10: predictionError = ru,i −−→pu · −→qi
11: for all latent dimensions k 6= 1 in −→pu do
12: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
13: end for
14: end while

values centered around zero. In batch algorithms this type of initialization is not
problematic, since after the initialization those values are overridden in multiple
iterations of gradient descent that scans several times over a training set. In a data
stream, however, scanning a training set multiple times is not possible. Ideally,
stream-based algorithms are one-pass algorithms, which scan all data only once.
Therefore, we adjust the initialization of new dimensions in the matrix to be
more meaningful from the start. We initialize new latent dimensions with average
values over all latent users/items. After the initial phase of the algorithm, the
latent matrices already contain meaningful values, therefore, their averages are
different from just random values. Additionally, we add a uniformly distributed
random component Z as in [36] from a small range of (−0.02, 0.02). Thus, a new
user vector pnew user and new item vector qnew item are initialized as follows:

pnew user,k =
1

|U | ·
|U|∑
i=1

pi,k + Z ∼ U(−0.02, 0.02) (16)

qnew item,k =
1

|I| ·
|I|∑
i=1

qi,k + Z ∼ U(−0.02, 0.02) (17)

Where k is the index of a latent dimension, U is a set of all users and I a set of
all items. Accordingly, new user and items are treated as average users/items until
there is enough learning examples to make them more specialized. The pseudo
code presenting the initialization of new dimensions is shown in Alg. 2.

Those two extensions are necessary adaptations of the BRISMF algorithm to
the streaming scenario. However, our central contributions are the extensions to
follow in the next subsections together with the forgetting strategies discussed
before. Our goal is to investigate their impact.

4.2 Matrix factorization for Rating-based Forgetting

In this subsection we present incremental matrix factorization with rating-based
forgetting in the online phase. This implementation extends the baseline algorithm
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Algorithm 2 Extend and initialize new dimensions

Input: −→pu,−→qi , P,Q,R
1: if −→pu == null then // if u is a new user
2: R.addNewUserDimension(u)

3: ∀k : pu,k = 1
|U| ·

|U|∑
i=1

pi,k + Z ∼ U(−0.02, 0.02)

4: P.addLatentUserVector(pu)
5: end if
6: if −→qi == null then // if i is a new item
7: R.addNewItemDimension(i)

8: ∀k : qi,k = 1
|I| ·

|I|∑
i=1

qi,k + Z ∼ U(−0.02, 0.02)

9: Q.addLatentItemVector(qi)
10: end if

from the previous subsection. Therefore, all differences in the performance between
this algorithm and the baseline are due to our forgetting techniques. Those for-
getting strategies can be also applied to different incremental matrix factorization
methods analogously.

Alg. 3 shows pseudo code of our rating-based forgetting. First, we introduce
a new notation, where −→r u∗ is a vector of all ratings of user u. In line 6 such a
user vector is retrieved from the matrix and in line 8 a rating-based forgetting
strategy is called. Consequently, all rating from the user’s vector that have been
deemed obsolete by the forgetting strategy are removed. In the following line, the
corresponding row in the matrix R is overridden with a new user vector that does
not contain the obsolete ratings. This ensures that the removed ratings are not
retrieved from the matrix R in the the next iteration of the algorithm. Subse-
quently, the user’s latent vector −→pu is retrained using all remaining ratings from
the −→r u∗ rating vector.

This procedure introduces a further loop into the algorithm, due to which its
complexity of a model update rises to O(E · ||−→r u∗||).

4.3 Matrix factorization for Latent Factor Forgetting

In Alg. 4 we present an implementation that uses latent factor forgetting strategies.
In lines 6 and 7 a forgetting strategy is invoked to modify the corresponding latent
user or item vectors.

Other than that, no further changes compared to the baseline algorithm are
necessary. Latent factor forgetting does not require retraining on past ratings,
therefore the complexity is here again at O(E).

4.4 Approximation of Rating-based Forgetting

Since rating-based forgetting increased the complexity of updating a preference
model to O(E·||−→r u∗||), we propose a faster approximative method of implementing
this type of forgetting.

The implementation in Alg. 5 eliminates the need for the additional loop for
retraining of the user latent vector on past ratings. Instead of this loop impact
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Algorithm 3 Incremental Learning with Rating-based Forgetting
Input: ru,i, R, P,Q
Parameters: η, k, λ, optimalNumberOfEpochs

1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(−→pu,−→qi , P,Q,R)
4: r̂u,i = −→pu · −→qi //predict a rating for ru,i
5: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
6: −→r u∗ ← getUserRatings(R, u)
7: (−→r u∗).addRating(ru,i)
8: rating-basedForgetting(−→r u∗) //obsolete ratings removed
9: R.overrideUserVector(−→r u∗) //obsolete ratings also removed from R

10: epoch = 0
11: while epoch < optimalNumberOfEpochs do
12: epoch++
13: for all ru,i in −→r u∗ do
14: −→pu ← getLatentUserVector(P, u)
15: −→qi ← getLatentItemVector(Q, i)
16: predictionError = ru,i −−→pu · −→qi
17: for all latent dimensions k 6= 1 in −→pu do
18: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
19: end for
20: end for
21: end while

Algorithm 4 Incremental Learning with Latent Factor Forgetting
Input: ru,i, R, P,Q
Parameters: η, k, λ, optimalNumberOfEpochs

1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(−→pu,−→qi , P,Q,R)
4: r̂u,i = −→pu · −→qi //predict a rating for ru,i
5: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
6: −→pu ← latentForgetting(−→pu)
7: −→qi ← latentForgetting(−→qi )
8: epoch = 0
9: while epoch < optimalNumberOfEpochs do

10: epoch++
11: predictionError = ru,i − r̂u,i
12: for all latent dimensions k 6= 1 in −→pu do
13: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
14: end for
15: end while

of learning upon a rating is stored in a deltaStorage (cf. line 26). The impact
in form of δpu results from subtraction of a latent user vector before and after
learning. If at a later time point this rating has to be forgotten, the impact of
this rating is retrieved from the deltaStorage (cf. line 13) and subtracted from the
corresponding latent user vector (cf. line 14).

Update of the preference model upon a new rating is done in the same way as
in the baseline algorithm. The complexity of an update is again O(E). However,
the procedure requires a higher memory consumption due to the deltaStorage.
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Algorithm 5 Incremental Learning with Approximative Rating-based Forgetting
Input: ru,i, R, P,Q
Parameters: η, k, λ, optimalNumberOfEpochs

1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(−→pu,−→qi , P,Q,R)
4: r̂u,i = −→pu · −→qi //predict a rating for ru,i
5: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
6: −→r u∗ ← getUserRatings(R, u)
7: (−→r u∗).addRating(ru,i)
8: remainingRatings = ratingBasedForgetting(−→r u∗)//obsolete ratings removed
9: R.overrideUserVector(−→r u∗) //obsolete ratings also removed from R

10: ratingsToBeForgotten = −→r u∗ − remainingRatings
11: for all ratingu,i in ratingsToBeForgotten do
12: −→pu ← getLatentUserVector(P, u)
13: δpu = deltaStorage.getUserVectorImpact(ratingu,i)
14: −→pu ← −→pu − δpu
15: end for
16: epoch = 0
17: −→pubeforeUpdate = −→pu
18: while epoch < optimalNumberOfEpochs do
19: epoch++
20: predictionError = ru,i −−→pu · −→qi
21: for all latent dimensions k 6= 1 in −→pu do
22: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
23: end for
24: end while
25: δpu = −→pubeforeUpdate −−→pu
26: deltaStorage.storeImpactOnUser(δpu )

5 Evaluation Settings

In this section we describe how we evaluate our methods. Our evaluation protocol
encompasses

– a method for splitting datasets for incremental matrix factorization
– incremental recall measure by Cremonesi et al. [6]
– parameter optimization
– significance testing

We applied this evaluation protocol to all 8 datasets used in our experiments
(cf. Sec. 6).

5.1 Dataset Splitting

Our method operates on a stream of ratings. However, matrix factorization requires
an initialization phase. According to the description of the BRISMF algorithms,
which we adopted here with modifications (cf. baseline algorithm in Sec. 4.1),
latent item features are trained only in the initial phase. Therefore, this phase is
of even higher importance to the BRISMF algorithm.

Because our methods operate in two phases, we use the evaluation protocol
from [27,26], briefly explained hereafter. Figure 1 represents an entire dataset
with with three parts. Part 1) is used for initial training in the batch mode. To
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evaluate training of latent factors on part 1), we use the part 2) of the dataset
(”batch testing”). After the initial training is finished, our method changes into
the streaming mode, which is its main mode.

In this mode we use prequential evaluation, as proposed by Gama et al. [10]. In
the streaming mode, for each new rating, first, a prediction is made and evaluated
and then this rating is used for updating the corresponding preference model. Due
to this temporal separation of prediction and update procedures, separation of the
training and test datasets is guaranteed. In our experiments we use the following
split ratios for the datasets: 20% for batch training, 30 % for batch testing and 50
% for the stream mode.

Fig. 1: Split of the dataset between the initialization and online phase (figure from [26]).

Since part 1) and 3) are used for training, part 2) of the dataset would represent
a temporal gap in the training data. For stream-based methods that rely heavily
on time aspects it is highly beneficial to maintain time continuity in the model.
Therefore, we also use part 2) of the dataset for stream training. However, since
it was used for batch testing, we don’t use it as test set for the streaming mode.

5.2 Evaluation Measure

As quality measure we use incremental recall, as proposed by Cremonesi et al. [6].
It measures how often a recommender system can find a relevant item among
random items in a stream. This measure should not be confused with the conven-
tional recall. Also, while conventional precision and recall are complementary to
each other and should always be considered together, it is not the case with the in-
cremental recall and incremental precision. If the incremental recall was measured,
then incremental precision can be derived from it and, therefore, it is redundant.
For readers unfamiliar with this measure we refer to [6] and summarise the process
of measuring it briefly.

First, in the process of measuring incremental recall, a relevance threshold
is defined, above which items are considered relevant e.g. more than 4 out of 5
stars. If a relevant item is encountered in a stream, 1000 further items are chosen
randomly. Those additional 1000 items are assumed to be irrelevant. All those
1000 random items and the relevant item are put into one set without indication
of relevance. Subsequently, a recommender systems ranks all 1001 items from this
set. If the relevant item has been ranked as one of top N items, then a hit is
counted. The final value of incremental recall for a given N is calculated using the
following formula:
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incrementallRecall@N =
#hits

|Testset| (18)

In our experiments we use incrementalRecall@10. In experiments with explicit
rating feedback, the ranking made by the recommender systems is sorted with
respect to the relevance score (highest first). In experiments with positive-only
feedback, the value of 1 indicates the existence of feedback. Therefore, the ranking
in this case is sorted with respect to the proximity of a predicted rating to 1.

Unlike in Secs. 3.1.5 and 3.2.4, where the incremental recall is measured for
each user separately and used to control the extent of forgetting, here we use it as
a global evaluation measure for the entire model.

We do not use the RMSE and MAE measures, because, unlike incremental
recall, they do not consider any ranking of the items and they are based mostly
on the great majority of non-relevant items.

5.3 Parameter Selection

Each of our forgetting strategies uses an additional parameter that needs to be set
in advance (e.g. the size of a sliding window). To find the optimal values of the
parameters we used a grid search algorithm that optimizes the average incremental
recall for each dataset separately.

To avoid overfitting, the grid search was performed on a small sample from our
datasets, called optimization set. The size of the optimization sets, expressed as
a percentage of all users, ranged between 0.01 and 0.1 depending on the dataset
size (cf. Tab. 1, column ”Ratio of Users for Parameter Optimization”). Using the
optimization set, we determined an approximately optimal parameter value. This
value was then applied onto the holdout dataset, which is the remaining, bigger
part of a dataset. The results reported in the next section are results on the holdout
sets.

The remaining parameters used by matrix factorization and SGD were set to
the following, approximately optimal values: number of dimensions = 40, learn
rate η = 0.003 and regularization parameter λ = 0.01.

5.4 Significance Testing

To study the effect of our forgetting strategies we use significance testing. How-
ever, in the streaming scenario following all requirements of statistical tests is
not a trivial task. One of the prerequisites of statistical tests is independence of
observations of a random variable.

In our case the random variable is the average incremental recall. However,
considering two measurements of incremental recall at timepoint t and t + 1 as
independent would be wrong, since incremental recall is a cumulative measure.
Therefore, quality at timepoint t affects the measurement of quality at timepoint
t+ 1. Consequently, the prerequisite of independent observations is violated.

As a solution to this problem we propose an alternative understanding of an
observation. We partition every dataset into n disjoint, consecutive parts along
the time dimension (imagine Fig. 1 n times along the time axis). Each of the parts
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is a sample of the entire dataset i.e. a sample from the same population. Since the
samples are disjoint, they are also independent. As one observation we define the
average incremental recall on one such sample. Consequently, on each dataset we
observe n realisations of the random variable for each forgetting strategy. In our
experiments we use n = 10, except for the ML100k dataset, where n = 5 due to
its small size (cf. Tab. 1, column ”Observations for Significance Testing”).

Having n observations for each forgetting strategy and for our baseline, the
”No Forgetting Strategy”, we first test, if there is a significant difference among
the strategies. For this purpose we use the Friedman test. It is more appropriate
here than e.g. ANOVA, since it does not assume the normal distribution of the
random variable. If the null hypothesis is rejected, then it can be assumed that
there is a significant difference among the forgetting strategies.

If this is the case, we perform post-hoc tests to find out, which forgetting
strategies are significantly better than our baseline, the ”No Forgetting Strategy”.
Therefore, we use the Wilcoxon signed rank test (paired measurements with no
assumption of normal distribution) with the following null hypothesis:

incr.RecallStrategyX = incr.RecallNoForgettingStrategy (19)

and alternative hypothesis:

incr.RecallStrategyX > incr.RecallNoForgettingStrategy (20)

where x denotes an average of the vector x.
If the null hypothesis is rejected, then the forgetting strategy X is significantly

better than no forgetting. Since we test multiple hypothesis, we apply a correction
for multiple testing according to the Hommel’s method [34] to avoid the alpha error
accumulation. In the next section we report the corresponding adjusted p-values
and a summary of significant improvements.

6 Experiments

In this section we present results of our experiments on eight real-world datasets.
We divide the results into ones showing the effects of the forgetting strategies (cf.
Sec. 6.1) and ones showing the effects of our approximation of the rating-based
implementation of forgetting (cf. Sec. 6.2). In total we conducted more than 1040
experiments on a cluster running a (Neuro)Debian operating system [11]. In those
experiments we used datasets from Tab. 1. There are two types of datasets. The
following description of them comes from our previous work [27].

The first type of datasets encompasses data with explicit rating feedback:
MovieLens 1M and 100k1 [12], a sample of 10 000 users from the extended Epin-
ions [24] dataset and a sample of the same size from the Netfilx dataset. In this
type of datasets our selection is limited, because many forgetting strategies require
timestamp information.

The second type of datasets is based on positive-only feedback. Those datasets
contain chronologically ordered user-item pairs in the form (u, i). Music-listen
consists of music listening events, where each pair corresponds to a music track

1 http://www.movielens.org/
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Dataset Ratings Users Items Sparsity

Ratio of
Users for

Parameter
Optimiza-

tion

Observa-
tions for
Signifi-
cance

Testing

Music-listen 335,731 4,768 15,323 99.54% 0.1 10
Music-playlist 111,942 10,392 26,117 99.96% 0.1 10
LastFM-600k 493,063 164 65,013 95.38% 0.1 10
ML1M GTE5 226,310 6,014 3,232 98.84% 0.1 10
ML100k 100,000 943 1,682 93.7% 0.1 5
Netflix(10k users) 2,146,187 10,000 17,307 98.76% 0.01 10
Epinions (10k users) 1,016,915 10,000 365,248 99.97% 0.03 10
ML1M 1,000,209 6,040 3,706 95.53% 0.05 10

Table 1: Description of datasets. The column ”Ratio of Users for Parameter Optimization” indicates
what ratio of users was used to create an optimization dataset for the grid search. ”Observations
for Significance Testing” indicates the number of partitions of a dataset used as observations for
significance testing.

being played by a user. Music-playlist consists of a timestamped log of music track
additions to personal playlists. Contrary to Music-listen, Music-playlist contains
only unique (u, i) pairs – users are not allowed to add a music track twice to
the same playlist. Both Music-listen and Music-playlist are extracted from Palco
Principal2, an online community of portuguese-speaking musicians and fans. Fur-
thermore, we also use a subset of the LasfFM3 dataset [4] – LastFM-600k – and
a binarized version of MovieLens 1M dataset that we call ML1M-GTE5 hereafter.
In ML1M-GTE5 we assume that a rating value of 5 indicates a positive feedback.
All remaining ratings have been removed and considered negative.

6.1 Impact of Forgetting Strategies

To show the impact of our forgetting strategies we compare them with the baseline
algorithm from Sec. 4.1. This baseline employs no forgetting strategy. Therefore,
we call it ”No Forgetting Strategy” hereafter. In this subsection no approximation
from Alg. 5 was used (for results using the approximation, see the next subsection).

First, we tested if the application of forgetting strategies has a significant
impact on the quality of recommendations measured in incremental recall. For
this purpose we used the Friedman rank sum test for each dataset separately as
an omnibus test. The null hypothesis of this test states that all recall values are
equal, no matter what forgetting strategy or no forgetting strategy was used.

In Tab. 2 we present results of the test on each dataset. The null hypothesis was
clearly rejected on all datasets, which is indicated by low p-values. Consequently,
we conclude that forgetting strategies make a significant difference in incremental
recall values. Further in this section, we use post-hoc tests to find out which
forgetting strategies are significantly better than no forgetting.

In Figure 2 we visualize the results of forgetting strategies on datasets with
positive-only feedback. This figure contains box plots of incremental recall (higher
values are better). Incremental precision in the streaming setting can be derived

2 http://www.palcoprincipal.com
3 http://last.fm
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Fig. 2: Results of our forgetting strategies vs. ”No Forgetting Strategy” (leftmost in the plots)
on datasets with positive-only feedback (higher values are better). Latent factor based
strategies are particularly successful.

Dataset
p-value (Friedman
rank sum test)

Epinions Extended (10k users sample) 4.381e-16
Lastfm 600k 1.852e-04
ML1M GTE5 1.911e-09
ML1M 4.565e-11
ML100k 3.389e-09
Netflix (10k users sample) 1.735e-09
Music-listen 2.773e-05
Music-Playlist 7.246e-15

Table 2: Results of the Friedman rank sum test as an omnibus test for each dataset. Very low
p-values indicate that forgetting makes a significance difference in the quality of recommenda-
tions.

from the recall measure and is, therefore, redundant (cf. [6]). Thus, we do not
present the incremental precision.

Horizontal bars in each box in Fig. 2 represent medians of incremental recall
from multiple partitions of a dataset (cf. Sec. 5). The hinges of each box represent
the first and the third quartile of the distribution. Dots stand for outliers.

In the figure we, again, see that forgetting strategies have a great impact on the
quality of recommendations as compared to the ”No Forgetting Strategy” (leftmost
in the plots). The latent factor forgetting strategies are particularly successful. On
three out of four positive-only datasets the ”SD-based User Factor Fading” was
the best strategy. The ”Forget Unpopular” strategy (also a latent factor forgetting
strategy) performed the best on the MLGTE5 dataset only.
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Fig. 3: Results of our forgetting strategies vs. ”No Forgetting Strategy” (leftmost in the plots)
on datasets with explicit rating feedback (higher values are better). Latent factor based
strategies are particularly successful.

From this group of forgetting strategies the ”Forget Popular” strategy is not
recommendable. It performed better than the baseline on the Lastfm dataset only
and otherwise considerably worse. The performance of rating-based strategies was
generally worse than the one of the latent factor forgetting, often marginally dif-
ferent from the baseline.

In Tab. 3 we present the corresponding results of experiments with positive
only feedback. The column ”Param.” describes the parameter setting for each
forgetting strategy. The meaning of the parameter depends on the strategy itself
(cf. Sec. 3). The parameter was determined by a grid search on a separate dataset
not used for the final evaluation.

The column with mean incremental recall uses the following nota-
tion: mean±std. deviation. The values of mean and standard deviation are based
on multiple runs on different, consecutive parts of each dataset (cf. Sec. 5.4). The
number of runs is indicated in Tab. 1 by column ”Observations for Significance
Testing”. The forgetting strategy with the best value of mean incremental recall
is marked in red.

P-values in the table refer to the Wilcoxon signed rank test (cf. Sec. 5.4). They
are adjusted using Hommel’s method to account for multiple testing. Values in
bold font and a single asterisk indicate that the given strategy is better than the
”No Forgetting Strategy” with significance level of 0.1. Values marked by two
asterisks are significant at level of 0.05 and by three asterisks at level of 0.01.
The column ”Runtime” follows the same notation as the mean incremental recall.
Values in each cell of this column represent a mean runtime in seconds on one
partition of each dataset.
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Forgetting Strategy Param.
Mean Incr.
Recall

Adjusted
P-value

Runtime
(ms)

Lastfm 600k
No Forgetting Strategy 0 0.01583±0.00361 - 65.84±5.23

Recall-based User Factor
Fading

1012 0.0525±0.00909 0.00684*** 74.11±7.78

SD-based User Factor Fading 1.2 0.06953±0.00768 0.00684*** 64.21±4.91

User Factor Fading 0.5 0.05541±0.00889 0.00684*** 64.31±3.2

Forget Unpopular 2 0.02458±0.00465 0.00684*** 66.41±4.87

Forget Popular 1.005 0.04436±0.02379 0.00684*** 66.24±5.11

Last N Retention 10 0.01496±0.00241 0.88379 88.7±9.4

Recent N Retention 1h 0.01519±0.00183 0.88379 86.04±7.31

Global Sensitivity-based
Forgetting

0.1 0.01718±0.00424 0.32032 55.99±5.77

Sensitivity-based Change
Detection

0.5 0.01716±0.00426 0.32032 58.29±3.48

Sensitivity-based Forgetting 10 0.01716±0.00426 0.32032 58.14±5.61

Recall-based Change
Detection

0.05 0.01478±0.00225 0.88379
1284.42±196.36

ML1M GTE5
No Forgetting Strategy 0 0.04005±0.00501 - 9.04±1.36

Recall-based User Factor
Fading

1012 0.02787±0.00621 0.99903 9.38±1.28

SD-based User Factor Fading 1.08 0.04075±0.00795 0.99903 9.78±2.46

User Factor Fading 0.99 0.04627±0.00545 0.00977*** 8.94±1.38

Forget Unpopular 1.2 0.05094±0.00452 0.00977*** 8.9±0.69

Forget Popular 1.00001 0.03706±0.00403 0.99903 9.74±2.41

Last N Retention 5 0.03692±0.00517 0.99903 13.67±2.06

Recent N Retention 1h 0.03803±0.00342 0.99903 43.77±13.41

Global Sensitivity-based
Forgetting

0.1 0.03792±0.00405 0.99903 11.3±1.92

Sensitivity-based Change
Detection

0.5 0.03789±0.00408 0.99903 10.59±1.61

Sensitivity-based Forgetting 10 0.03795±0.00407 0.99903 10.81±1.53

Recall-based Change
Detection

0.05 0.03808±0.00335 0.99903 45.06±10.74

Music-Listen
No Forgetting Strategy 0 0.07083±0.02328 - 68.42±4.09

Recall-based User Factor
Fading

1012 0.09178±0.02308 0.58887 61.36±5.35

SD-based User Factor Fading 1.2 0.12713±0.02976 0.01075** 61.19±5.7

User Factor Fading 0.5 0.1033±0.02649 0.18555 67.83±8.67

Forget Unpopular 2 0.06078±0.02505 1 66.58±9.02

Forget Popular 1.005 0.02227±0.00241 1 73.01±9.58

Last N Retention 40 0.05588±0.01745 1 101.73±14.09

Recent N Retention 1 week 0.05527±0.01885 1
224.31±108.35

Global Sensitivity-based
Forgetting

0.1 0.07082±0.02473 1 34.99±1.88

Sensitivity-based Change
Detection

0.5 0.07082±0.02476 1 36.8±4.57

Sensitivity-based Forgetting 10 0.0709±0.02473 1 35.97±4.59

Recall-based Change
Detection

0.05 0.05477±0.01661 1 249.34±93.92

Music-Playlist
No Forgetting Strategy 0 0.03712±0.00946 - 4.12±0.9

Recall-based User Factor
Fading

1012 0.0366±0.01358 0.99805 4.16±0.75

SD-based User Factor Fading 1.2 0.04708±0.01214 0.05372* 4.2±0.49

User Factor Fading 0.99 0.04058±0.01232 0.99805 3.85±0.63

Forget Unpopular 1.5 0.02972±0.0109 0.99805 4.09±0.91

Forget Popular 1.00001 0.03679±0.00986 0.99805 4.1±0.67

Last N Retention 40 0.03393±0.01201 0.99805 10.94±1.5

Recent N Retention 1 year 0.03333±0.01231 0.99805 39.64±48.78

Global Sensitivity-based
Forgetting

0.1 0.03609±0.01171 0.99805 4.2±0.66

Sensitivity-based Change
Detection

0.5 0.03604±0.01171 0.99805 4.06±0.75

Sensitivity-based Forgetting 10 0.03616±0.0116 0.99805 4±0.56

Recall-based Change
Detection

0.05 0.03333±0.01231 0.99805 38.75±48.41

Table 3: Results on datasets with positive only feedback. Best value of incremental recall is marked
in red. Asterisks indicate that a given strategy is significantly better than the no forgetting strategy
(* at 0.1; ** at 0.05; *** at 0.01).
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Forgetting Strategy Param.
Mean Incr.
Recall

Adjusted
P-value

Runtime
(ms)

Epinions Extended (10k users sample)
No Forgetting Strategy 0 0.0005±0.00084 - 160.03±16.1

Recall-based User Factor
Fading

1010 0.00307±0.00357 0.00879***
451.89±38.52

SD-based User Factor Fading 1.08 0.00219±0.00163 0.00879***
154.45±11.68

User Factor Fading 0.5 0.00274±0.00297 0.00879***
152.92±14.87

Forget Unpopular 2 0.00035±0.00057 1 156.5±15.81

Forget Popular 1.00001 0.0005±0.00084 1 161.76±18.74

Last N Retention 10 0.0005±0.00084 1 192.48±24.29

Recent N Retention 4 weeks 0.0005±0.00084 1 2923±601.75

Global Sensitivity-based
Forgetting

0.1 0.00052±0.00087 1 148.81±16.9

Sensitivity-based Change
Detection

0.5 0.00052±0.00087 1 143.67±10.98

Sensitivity-based Forgetting 10 0.00052±0.00087 1 144.04±13.9

Recall-based Change
Detection

0.05 0.00051±0.00085 1
5857.13±4815.21

ML100k
No Forgetting Strategy 0 0.07336±0.0093 - 3.22±0.39

Recall-based User Factor
Fading

1010 0.07201±0.0155 1 3.24±0.19

SD-based User Factor Fading 1.04 0.08708±0.01319 0.1875 1.72±0.12

User Factor Fading
0.99999999

0.07336±0.0093 1 1.63±0.09

Forget Unpopular 1.5 0.08307±0.01151 0.1875 1.8±0.11

Forget Popular 1.00001 0.07039±0.01093 1 1.96±0.28

Last N Retention 10 0.08112±0.00476 0.1875 9.42±0.83

Recent N Retention 1h 0.08186±0.01331 0.1875 70.55±7.59

Global Sensitivity-based
Forgetting

0.1 0.07462±0.00901 0.375 3.47±0.39

Sensitivity-based Change
Detection

0.5 0.07462±0.00901 0.375 3.5±0.3

Sensitivity-based Forgetting 10 0.07462±0.00901 0.375 3.51±0.34

Recall-based Change
Detection

0.05 0.08185±0.01331 0.1875 72.89±7.98

ML1M
No Forgetting Strategy 0 0.10211±0.01104 - 32.41±7.35

Recall-based User Factor
Fading

1012 0.11249±0.01479 0.10547 63.63±16.63

SD-based User Factor Fading 1.1 0.1244±0.01697 0.02051** 33.65±7.07

User Factor Fading 0.99 0.11327±0.01237 0.00586*** 33.41±7.33

Forget Unpopular 1.2 0.14088±0.01014 0.00586*** 37.44±9.3

Forget Popular 1.00001 0.06073±0.01053 1 37.52±8.69

Last N Retention 10 0.10679±0.01115 0.00586*** 64.18±3.56

Recent N Retention 1 week 0.10585±0.01056 0.00782***
939.05±103.08

Global Sensitivity-based
Forgetting

0.1 0.1041±0.01153 0.01172** 25.88±2.03

Sensitivity-based Change
Detection

0.5 0.10412±0.01154 0.01172** 25.95±2.19

Sensitivity-based Forgetting 10 0.10408±0.01151 0.01172** 25.81±2.07

Recall-based Change
Detection

0.05 0.10585±0.01056 0.00782***
951.31±107.55

Netflix (10k users sample)
No Forgetting Strategy 0 0.15455±0.0165 - 38.24±9.32

Recall-based User Factor
Fading

1010 0.16687±0.02184 0.64063 73.58±13.47

SD-based User Factor Fading 1.02 0.18644±0.01707 0.00977*** 39.67±9.25

User Factor Fading 0.99 0.17442±0.0163 0.00977*** 38.16±7.61

Forget Unpopular 1.1 0.18341±0.01988 0.06153* 47.64±7.61

Forget Popular 1.00001 0.08305±0.0129 1 47.2±7.93

Last N Retention 5 0.1454±0.01463 1 78.61±12.89

Recent N Retention 1 year 0.14521±0.0125 1
1446.4±342.16

Global Sensitivity-based
Forgetting

0.5 0.14935±0.01454 1 61.86±13.76

Sensitivity-based Change
Detection

0.5 0.14933±0.01465 1 58.37±10.4

Sensitivity-based Forgetting 3 0.14942±0.01439 1 59.43±11.4

Recall-based Change
Detection

0.05 0.14521±0.01251 1
1508.71±333.19

Table 4: Results on datasets with explicit rating feedback. Best value of incremental recall is marked
in red. Asterisks indicate that a given strategy is significantly better than the no forgetting strategy
(* at 0.1; ** at 0.05; *** at 0.01).
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Fig. 4: Incremental recall of approximative rating based forgetting is similar to the non-
approximative variant.

Tab. 3 shows that on all datasets with positive only feedback there is at least
one forgetting strategy that is significantly better than no forgetting at the sig-
nificance level better than 0.054. On three out of four datasets the best strategy
was the SD-based User Factor Fading, on the remaining dataset it was the Forget
Unpopular strategy.

Forgetting strategies brought on this type of datasets an improvement in the in-
cremental recall of 118.18 % on average (as a result of comparison of the best strat-
egy with the ”No Forgetting Strategy”). Especially on the Lastfm 600k dataset
recall improved from 0.01583 to 0.06953 . The median of improvement is 53,34%.

Not only did quality improve, the computation time decreased for the best
strategy by 3,21 % on average. However, considering the high variance of run-
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time, this decrease is not substantial. Some strategies, e.g. ”Recall-based Change
Detection” showed higher computation time.

In Fig. 3 and in Tab. 4 we present analogous results of experiments with
datasets with explicit rating feedback. Also here, the latent factor based strategies
perform the best except for the ”Forget Popular” strategy. In Tab. 4 we show
improvements in quality of recommendations over the baseline. The significance
level on three out of four of the datasets is better than 0.01. Only on the ML100k
dataset no significant improvement could be shown. ML100k is a small dataset
with only five observations, therefore, it is difficult to show significance on this
dataset.

The improvement of quality due to forgetting reached 147,83 % on average
(best strategy vs. no forgetting). The percentage is so high because of the extreme
improvement on the Epinions dataset. The median of the improvement amounts
to 19,67%. The runtime, when using the best strategy, increased on average by
48.62%, the median of the percentual runtime increase is 9,63%, though.

6.2 Impact of the Approximative Implementation

Since the rating-based forgetting strategies have a higher complexity than the
latent factor based ones, we implemented also an approximative way of using them
(cf. Sec. 4.4). This implementation stores a past impact of a rating and undoes it
in an approximative way when the rating should be forgotten.

In Figure 4 we present the incremental recall values achieved by this approxi-
mative implementation (dashed line) in comparison to the original implementation
of rating-based forgetting (solid line). The approximation performed similarly to
the original implementation. In few cases it performed better (e.g. for the ”Last
N Retention” strategy on the ML1M GTE5 dataset). However, those cases are
rather exceptional and no significant improvement can be concluded based on
them. There are also cases with a decrease of the performance, such as on ML100k
dataset.

Nevertheless, the goal of the approximation is to maintain a similar level of
quality while decreasing the runtime. We present such a runtime comparison of
those two implementations in Tab. 5. Values in the table represent median of a
runtime of multiple runs of our algorithms. The values are grouped by dataset and
implementation (approximation vs. the original rating-based implementation).

The approximation decreased the computation time for the strategies Last
N Retention, Recent N Retention, Recallbased Change Detection. For the re-
maining three strategies the approximation often took more time despite lower
complexity. This is explained by the fact that the approximative implementation
of forgetting changes the latent model in a different way than the rating-based
implementation does. Therefore, a forgetting strategy can select different ratings
to forget depending on which implementation is used (approximative vs. rating-
based). Consequently, a given forgetting strategy can decide to forget more, if the
approximative implementation is used. Then, due to more storing and retrieving
operations from the delta storage, the approximative implementation can require
a longer computation time.

Consequently, we recommend the usage of the approximation only after prior
testing of its behaviour with a given forgetting strategy.
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Forgetting Strategy Approx. Rating-
based

Approx. Rating-
based

Epinions (10k users) Lastfm 600k
Last N Retention 106.22 185.60 74.74 91.48
Recent N Retention 235.61 3068.94 91.59 86.51
Global Sensitivity-based
Forgetting

381.59 142.08 198.23 56.16

Sensitivity-based Change
Detection

439.96 142.07 211.40 59.68

Sensitivity-based
Forgetting

387.46 143.43 208.36 58.69

Recall-based Change
Detection

375.18 3352.39 128.50 1255.23

ML100k ML1M
Last N Retention 2.27 23 621.00 16.99 65.18
Recent N Retention 2.52 69.52 35.37 948.10
Global Sensitivity-based
Forgetting

4.16 16 497.00 64.84 26.33

Sensitivity-based Change
Detection

3.87 16 862.00 60.44 26.73

Sensitivity-based
Forgetting

3.63 23 802.00 55.35 26.52

Recall-based Change
Detection

4.30 72.60 46.72 955.87

ML1M GTE5 Music-listen

Last N Retention 9.41 42 627.00 49.13 100.29
Recent N Retention 9.22 45.27 51.63 187.98
Global Sensitivity-based
Forgetting

9.66 33 909.00 47.86 35.11

Sensitivity-based Change
Detection

10.22 42 411.00 55.00 36.17

Sensitivity-based
Forgetting

9.58 34 608.00 55.75 35.06

Recall-based Change
Detection

8.85 47.31 51.55 225.22

Music-Playlist Netflix (10k users)

Last N Retention 3.61 43 405.00 63.72 77.04
Recent N Retention 3.82 42 571.00 81.58 1299.18
Global Sensitivity-based
Forgetting

4.84 44 287.00 156.48 62.35

Sensitivity-based Change
Detection

4.57 30 376.00 161.85 59.99

Sensitivity-based
Forgetting

3.79 42 404.00 158.41 61.00

Recall-based Change
Detection

3.40 19.22 153.33 1327.40

Table 5: Median runtime (in seconds) of the approximative and rating-based implementation of
forgetting.

7 Conclusions

Before our work, adaptation to changes in recommender systems was implemented
only by incorporating new information from a stream into a preference model.
While this is a valid method of adaptation, it is not sufficient. In this paper, we
have shown that forgetting obsolete information (additionally to incorporating new
one) significantly improves predictive power of recommender systems.

We proposed eleven unsupervised strategies to select the obsolete information
and three algorithms to enforce forgetting. In our experiments we used a state-of-
the-art incremental matrix factorization algorithm, BRISMF [36], and extended
it by the ability to forget information and to add new dimensions to the matrix.
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Our forgetting strategies can be applied to any matrix factorization algorithm.
Rating-based strategies are also applicable to neighbourhood-based methods.

Further, we proposed a new evaluation approach that includes significance test-
ing. We conducted more than 1040 experiments on eight real world datasets with
explicit rating feedback and positive only feedback. On seven out of eight of those
datasets we observed a significantly better performance when using forget-
ting. On five of them the improvement was significant at level better than 0.01.

From all our forgetting strategies, the latent factor based ones were particularly
successful in terms of quality of recommendations and in terms of computation
time. On five out of eight datasets the ”SD-based User Factor Fading” strategy
achieved the best result, followed by the ”Forget Unpopular” strategy with best
result on two out of eight datasets. Rating-based forgetting strategies also showed
significant improvements over the ”No Forgetting” strategy, however, their im-
provement was not as high, as in the case of latent-based strategies. We remark
that not all of the forgetting strategies achieved a significant improvement. The
strategy that achieved highly significant improvement on the most datasets (6 out
of 8) is the SD-based user factor fading strategy.

Rating-based forgetting strategies have higher complexity and, therefore, a
higher runtime than latent factor based strategies. Therefore, we proposed an
approximative implementation that maintains a similar level of incremental recall
as the original, rating-based implementation. For half of the strategies it reduced
the computation time considerably. For the other half the computation often took
longer. Therefore, we recommend to use this approximation only in time-critical
applications and after prior testing.

Our recommendation to practitioners is to, first, use the latent factor based
forgetting strategies (e.g. the SD-based user factor fading strategy) due to their
outstanding performance in terms of incremental recall and only slightly increased
computation time. The rating-based implementation forgetting is the next best
alternative.

Despite the significant improvements due to forgetting, our implementation
also has limitations. One of them is related to the BRISMF algorithm. Since it
does not incrementally update the latent item features, it still requires an oc-
casional retraining to consider changes in the item features. This limitation is,
however, more related to the learning algorithm itself than to forgetting strate-
gies. Another limitation affects the rating-based forgetting strategies. Unlike the
latent factor-based strategies, they need to maintain the rating matrix R in the
main memory, from which our method selects the ratings to be forgotten. However,
this requirement is also true for many conventional recommendation algorithms
without forgetting.

In our future work we plan to investigate how to detect a sudden change in pref-
erences of users (i.e. concept shift). The improvements due to forgetting indicate
the existence of concept drift in users’ preferences. However, a detection of sudden
changes is extremely challenging and requires a different treatment compared to
gradual changes.

Furthermore, we intend to investigate ensembles of forgetting strategies. It
is possible to combine several forgetting strategies in one system. However, task
of combining forgetting strategies is complex. The complexity results from the
huge number of possible combinations of forgetting strategies. Also their interplay
requires a thorough investigation. Fitting of parameters is also not trivial in an
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ensemble setting as forgetting strategies influence each other and need be tuned
for each combination separately.
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