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Abstract

Personalized Medicine requires the analysis of epidemiological data for the identification of subgroups sharing some risk
factors and exhibiting dedicated outcome risks. We investigate the potential of data mining methods for the analysis
of subgroups of cohort participants on hepatic steatosis. We propose a workflow for data preparation and mining
on epidemiological data and we present InteractiveRuleMiner, an interactive tool for the inspection of rules in each
subpopulation, including functionalities for the juxtaposition of labeled individuals and unlabeled ones. We report on
our insights on specific subpopulations that have been discovered in a data-driven rather than hypothesis-driven way.

Keywords: medical data mining, classification rules, subpopulation mining, interactive data mining, longitudinal
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1. Introduction

Medical research on epidemiological data aims to iden-
tify risk factors for diseases and to contribute thus to pre-
vention and diagnosis [22]. Epidemiological data come
from population-based studies with a large number of ran-
domly selected participants (the cohorts), for whom sev-
eral variables are recorded; these may include sociodemo-
graphics, results of medical tests (e.g. on blood samples)
and, recently, also magnetic resonance imaging (MRI) of
body parts. Epidemiological research is commonly hypothesis-
driven: scholars formulate a hypothesis on how a behaviour
(e.g. alcohol consumption), a chronic disease (e.g. dia-
betes), a genetic predisposition or other factor may affect
the prevalence of a certain outcome (e.g. cirrhosis, fatty
liver); they then perform a careful selection of cohort par-
ticipants with and without the outcome, on which the role
of the candidate determinant is investigated with statisti-
cal analysis.

With the proliferation of medical engineering technol-
ogy, an enormous number of variables, including biomark-
ers, can be recorded in population-based studies. For-
mulating hypotheses on each and every variable of those
truly Big epidemiological Data is impractical, so that data-
driven analysis of epidemiological data, namely epidemio-
logical data mining, is now gaining momentum. Its pur-
pose is to identify factors that are potentially associated
with an outcome, so that hypothesis-driven analysis con-
centrates on them. This trend is further strengthen by
the demands of personalized medicine [12], which requires
the detection of previously unspecified subpopulations of

patients that share common determinants (i.e. factors as-
sociated with an outcome).

In this study, we propose a mining workflow and an in-
teractive tool for the discovery of potential determinants
and corresponding value intervals that are associated with
the multifactorial disorder hepatic steatosis (aka: fatty
liver). Our emphasis is on highlighting fatty liver determi-
nants that are not characteristic of the whole cohort but
of cohort subgroups, e.g. female participants aged over 50.

Data mining methods are used widely on clinical data
for diagnostic and therapeutic purposes, and there are also
comparative studies on the performance of different min-
ing algorithms for a specific clinical task, see e.g. [21].
However, clinical data mining analyzes data on patients,
while epidemiology cohorts consist of participants with
and without the outcome. Medical research on epidemio-
logical data delivers the diagnostic indices that are later
used for clinical diagnosis, e.g. the ”fatty liver index” pro-
posed by Bedogni et al. in [2]. Hence, although our work-
flow encompasses mining methods that have been used on
clinical data, studies on clinical data mining do not pro-
vide evidence on the potential of these same methods for
epidemiological data analysis tasks, as we study here.

Mining methods on epidemiological data are rather
rarely used. Multiple regression is often the approach
of preference [5], but linear models, Cox regression and
Poisson regression have also been used - notably on the
epidemiological data we analyze here [1, 11, 18, 28]. How-
ever, the use of regression in such studies is still mostly
hypothesis-driven, e.g. on whether liver ultrasonography
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can predict mortaility rask from elevated serum gamma-
glutamyl transpeptidase levels [11]. Our objective in this
study is to demonstrate the potential of data-driven anal-
ysis for class separation in epidemiological data. Finding
new, previously unsuspected determinants is not within the
scope of our study. Rather, the potential of our approach
is reflected on the quality of the learners, and, more impor-
tantly, on the data-driven identification of subpopulations
that differ with respect to the class distribution, and on
the data-driven discovery of associations that through in-
dependent, hypothesis-driven studies have earlier shown
to exist.

We study our mining workflow on an multifactorial dis-
order, hepatic steatosis, using data from the first cohort
of the ”Study of Health in Pomerania” (SHIP); SHIP con-
sists of population-based samples selected from Pomera-
nia in Northeast Germany [27]. SHIP has already been
extensively used for hypothesis-driven reseach on hepatic
steatosis and lends itself excellently to the purposes of our
analysis: we use the results of liver MRI recordings as tar-
get variable and a multitude of sociodemographic variables
and medical tests for classification.

The contributions of our work are as follows. First,
we propose a mining process for the classification of the
participants of an epidemiological study with respect to
a target outcome; we choose exemplarily the multifacto-
rial disorder hepatic steatosis. Moreover, we propose an
interactive tool, which we call InteractiveRuleMiner, with
which a medical expert can drill into a derived model and
investigate the properties of those subpopulations she con-
siders interesting. Albeit mining workflows are often pro-
posed for clinical data, mining methods for epidemiolog-
ical data are rare and, in contrast to our method, they
are hypothesis-driven. With our approach, a mining ex-
pert does not need to formulate hypotheses in advance,
but can rather study the insights delivered by the models,
identify subpopulations, drill-down on them and acquire
further insights interactively.

The paper is organized as follows. In the next section,
we discuss related work. In section 3 we describe materials
and methods for data preparation, population partitioning
and classification. In section 4 we report on the discovered
models and important features for the different partitions.
In section 5 we present our tool ”InteractiveRuleMiner”.
The last section concludes the paper with a discussion and
an outlook towards learning disorder progression.

2. Related Work

Medical decisions concerning the diagnosis of multifac-
torial diseases are based on clinical and epidemiological
studies. The latter accommodate information on partici-
pants with and without the disorder and allow for discrim-
inative model learning and, in the longitudinal design, for
understanding the progress of a disorder (possibly towards
a disease). There are several studies on the identification

of factors (like obesity or alcohol consumption) and out-
comes (like cardiovascular diseases) associated with hep-
atic steatosis. Findings on genetic and non-genetic factors
include [13, 16, 25]; findings on associated outcomes in-
clude [26] and [19]. However, these studies identify risk
factors and/or associated outcomes that pertain to the
whole population. Our study emanates from the neces-
sity to identify such factors and outcomes for subpopu-
lations and thus to stimulate personalized diagnosis and
treatment, as expected in personalized medicine [12, 29].

Classification on subpopulations is studied by Zhanga
and Kodell in [32], albeit they analyze clinical data for di-
agnosis, while we analyze epidemiological data to identify
variables associated with the outcome. Zhanga and Kodell
point out that the complete population can be very het-
erogeneous, so that classifier performance on the whole
dataset can be low. Therefore, they first train an ensem-
ble of classifiers, then associate with each training instance
the predictions made on it by each ensemble member,
thus creating a new feature space where the variables are
the predictions. They then perform hierarchical cluster-
ing on the instances, thus building three subpopulations:
one where the prediction accuracy is high, one where it is
intermediate and one where it is low [32]. With this ap-
proach, Zhanga and Kodell split the original dataset into
subpopulations that are easy or difficult to classify [32].
The method seems appealing in general, but does not look
promising in our case: we investigate a three-class prob-
lem with a very skewed distribution, so we already know
that low accuracy is partially caused by the skew. Hence,
we study the dataset exploratively before classification,
to identify subpopulations that exhibit less skew, and ex-
ploratively after classification, to identify variables inside
each subpopulation, which are associated to the outcome
with high likelihood.

Pinheiro et al. perform association rule discovery on
patients with liver carcinoma [20]. The authors point
out that early detection of liver cancer may help reduc-
ing the five-year mortality rate (which is currently 86 %
[20]), but early detection is difficult, because in the onset
of a liver carcinoma, the patient often observes no symp-
toms [20]. Pinheiro et al. leverage the association rule
miner FP-growth [10] to discover high-confidence associa-
tion rules and high-confidence classification rules with re-
spect to mortality in a liver cancer patients dataset. We
also consider association rules promising for the analy-
sis of medical data, because they are easy to compute
and deliver results that are understandable by humans.
Therefore, we also use association rules as baseline mining
method, though for epidemiological data and for classifica-
tion rather than mortality prediction. To use association
rules for classification, we specify that the rule consequent
should be the target variable (the rules are then called
”classification rules”; we use this term hereafter).

Next to its advantages, association rule discovery (and
classification rule discovery) has an inherent disadvantage:
namely it generates large or even huge numbers of rules,
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among which the expert has to search for the truly inter-
esting ones. Scholars have often proposed visualization as
a remedy, and there is substantial research on comprehen-
sible visual representations of large numbers of association
rules. For example, Hahsler and Chelluboina group asso-
ciation rules’ antecendents by their shared attributes to
create a grid, where more important rules are displayed as
circles; a circle’s size and color reflects the rule’s support
and lift values, respectively [8]. This tool further allows
the user to zoom into interesting areas of the visualized
set of rules [8].

In [24], Sekhavat and Hoeber stress that ”. . . in spite
of the advantages of previous works in visualizing asso-
ciation rules, the most common problem they encounter
is their inability to handle a large collection of rules. In
general, this results in occlusion and screen clutter prob-
lems due to the need to compress the visual representation
into a single view.” They propose SARV (Scalable Associ-
ation Rule Visualisation), an interactive panel containing
(i) a table-like grid view where rows represent rule an-
tecedents, columns represent rule consequents, and a cell
captures a single rule, colored (in grey-scale) according to
the rules support value – this view is interactive, so that
potentially interesting rules can be selected; (ii) a graph
view for the visual exploration of the relationships between
rules selected in the grid view; (iii) a textual view for dis-
playing a rules support and confidence values [24]. The
InteractiveRuleMiner of our approach also contains visual-
ization aids and allows the medical expert to select rules
for inspection. However, a medical expert is less interested
in a rule’s support and confidence, and more on how the
rule manifests itself inside each class. Hence, our Inter-
activeRuleMiner shows graphically how the instances sup-
porting each rule are distributed among the classes, and
it allows the medical expert to sort and juxtapose rules
according to different criteria.

For mining on medical data, there are many supervised
learning methods to choose from, next to association rules.
Similarly to [17], who study warafin medication among el-
derly patients, and similarly to our earlier work on the
malignance of breast tumors [7], we also use decision trees
for classification. The SHIP data we study have been so
far analyzed mainly with regression methods, including
Cox regression [18, 11], generalized linear and mixed mod-
els [1], generalized estimating equations, structural equa-
tion models, median and Poisson regression [28]. So, what
should be the method of choice? Pombo et al. compare
39 studies, where supervised learning methods had been
used for pain assessment in clinical decision support [21].
The learning task common to these studies, had been to
predict whether pain treatment would be necessary. The
studies had used rule-based algorithms, artificial neural
networks, nonstandard set theory, and statistical learning
algorithms. Pombo et al. compare them on accuracy and
demonstrate that none outperforms all others [21]. This
indicates that the choice of the classification algorithms
depends on the medical problem and should also be dic-

tated by further requirements of the medical task. In our
study, we use decision trees, regression trees and classifica-
tion rules for supervised learning, because these methods
deliver models that can be directly interpreted by a human
expert. Our InteractiveRuleMiner tool is a further aid for
model inspection and interpretation.

In [7], we have proposed a workflow for data prepara-
tion and classification on a patient cohort, paying emphasis
on the identification of variables that separate well among
the classes. The work reported here is based on a simpler
workflow, but uses more methods and an elaborate data
partitioning step to deal with severe class imbalance and
with different class distributions in the partitions.

3. Materials and Methods

The data used for population partitioning and class
separation for hepatic steatosis come from the Study of
Health in Pomerania (SHIP). We describe the data in sub-
section 3.1. In subsection 3.2, we explain what motivated
us to partition the data and present our partitioning steps.
Then, we discuss the methods we used for class separation
on the whole dataset and on the partitions (cf. 3.3).

3.1. The Dataset

The Study of Health in Pomerania (SHIP) encompasses
two independent cohorts. Cohort inclusion criteria were
age from 20 to 79 years and main residency in the study
region. Baseline examinations for the first cohort were per-
formed between 1997 and 2001 (SHIP-0, n= 4308). Fol-
lowup examinations were done in 2002-2006 (SHIP-1, n=
3300) and 2008-2012 (SHIP-2, n= 2333). Baseline infor-
mation for a second, independent cohort (SHIP-TREND-
0, n= 4420) was collected in 2008-2012.

For our analysis, the target variable is derived from
the participant’s liver fat concentration computed with
magnetic resonance imaging (MRI). Preliminary MRI re-
sults are currently available for 578 SHIP-2 participants.
These MRI results are preliminary, because the MR tech-
nique used to compute the values of the original target
variable mrt liverfat s2 included a correction of T2? ef-
fects, but other confounders for chemical shift MR fat
quantification, such as multi-spectral complexity of fat
and T1 effects were ignored. However, as shown in [15],
these latter confounders behave linearly with respect to the
target. Through conservative choice of the cut-off value
(see below) and discretization, this problem was partially
amended, so that the mining methods still behave reliably.

We use the data of these participants for classifier learn-
ing, while our interactive InteractiveRuleMiner (cf. section
5) also juxtaposes these data to the data of the remaining
1755 participants, for whom the MRI recordings were not
made available. We derive the target variable from the
result of the MRI report through discretization. In par-
ticular, participants with a liver fat concentration of no
more than 10 % are mapped to class A (”negative” class,
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corresponds to the absence of the disorder); values greater
than 10 % and lower than 25 % are mapped to class B
(increased liver fat / fatty liver tendency); values greater
than 25 % are mapped to class C (high liver fat). We con-
sider classes B and C as ”positive”. The cut-off of 10 % is
higher than the value of 5% suggested in [14] for separation
the between healthy subjects and subjects with hepatic
steatosis. However, the primary interest from the medical
perspective was the identification of important variables
for individuals that are likely to be ill. The selection of a
high cut-off value made the mining task substantially more
challenging, as is explained hereafter.

Out of the 578 participants, 438 belong to class A (≈
76 %), 108 to B (≈ 19 %) and 32 to C (≈ 6 %).

Next to the target variable, the dataset contains 66
variables extracted from participants’ questionnaire an-
swers and medical tests (cf. [27]). They are variables on so-
ciodemographics (gender, age etc), variables on consump-
tion behaviour (e.g. alcohol and nicotin), SNPs, variables
extracted from laboratory data (e.g. sera concentrations),
and two variables on the results of the liver ultrasound –
stea s2 and stea alt75 s2. Both variables take symbolic
values that reflect the likelihood that the participant has
fatty liver; the latter is a combination of the former and
the ALAT recording for the participant; details are in [27].

Some values of stea s2 and stea alt75 s2 are corre-
lated to the target variable, in the sense that they occur of-
ten under the classes A or C, but they are not adequate for
class separation. Since MRI was performed only on SHIP-
2, while liver ultrasound recordings are also available in
SHIP-0, we are particularly interested in identifying addi-
tional predictive features for subpopulations characterized
by specific values of the two liver sonography variables.

Almost all variables we mention hereafter have the suf-
fix s2. This stands for values recorded in the SHIP-2 fol-
lowup, as opposed to SHIP-0 and SHIP-1. Exceptions are
gender, highest school degree and the 10 SNP variables.

3.2. Partitioning the Dataset into Subpopulations

Our decision for partitioning before classification was
motivated by the observation that the dataset is imbal-
anced with respect to gender (314 women, 264 men). Our
first step (cf. 3.2.1) is the investigation of the class distri-
butions in the two partitions on gender, whereupon we see
that the distributions are very different, most notably with
respect to class B. The second step (cf. 3.2.2) is the inves-
tigation of the class distributions on age, whereupon we
detect that age has an influence on the posteriors for the
partition PartitionF but not for the partition PartitionM.
The third step of our approach is then the identification
of the cut-off point for age: we introduce a heuristic that
identifies the age value which minimizes the standard de-
viation with respect to the target variable. Supervised
learning (cf. 3.3) is then performed separately on the par-
titions of male and of female participants, while an addi-
tional learner is built for the subpopulation of older female
participants (aged above 52, the cut-off point for age) .

3.2.1. Partitioning the Original Dataset on Gender

In Table 1, we depict the absolute and relative distri-
bution of the target variable: for the whole dataset, for
the subset of female participants and the subset of male
participants. These subsets are called PartitionF and Par-
titionM hereafter. The gender-based separation leads to
very different target variable distributions: the portion of
A participants in PartitionM is much lower than in Par-
titionF (69 % vs. 81 %). The last entry of Table 1 is
discussed in 3.2.2.

absolute relative
Partition total A B C A B C

All 578 438 108 32 76 % 19 % 6 %
PartitionM 264 183 66 15 69 % 25 % 6 %
PartitionF 314 255 42 17 81 % 13 % 5 %
F:age>52 183 131 40 12 72 % 22 % 7 %

Table 1: Class Distribution on Gender

The disparity of the distributions on gender becomes
more clear in Figure 1, where the values for median, first
and third quartile are different in the two partitions: (i)
the median of PartitionF is lower than the median of Parti-
tionM (3.7 % vs. 5.9 %) and (ii) the difference between the
first and the third quartile for PartitionF is smaller than for
PartitionM (4.2 % vs. 7.7 %). The maximum length of the
whiskers in this boxplot is defined by 1.5 · (q3 − q1), where
q1 is the value of the first quartile and q3 is the value
of the 3rd quartile for the distribution of mrt liverfat s2:
a participant with a liver fat concentration outside the
whiskers is then termed an ”outlier”. There are more out-
liers with very high fat liver concentrations in PartitionF
than in PartitionM (47 vs. 15). Additionally, if we observe
the number of outliers with a fat liver concentration of
more than 23.3 %, i.e. at the approximate position of the
upper whisker in PartitionM, we see that (iii) the absolute
number of female participants with even higher concen-
tration is larger than the corresponding number of male
participants (19 vs. 15). These findings lead us to further
investigations of the class distribution in the partition Par-
titionF.

Figure 1: Boxplots for PartitionF and PartitionM
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3.2.2. Splitting the Set of Female Participants on Age

We performed an analysis of the class distribution in
the partition PartitionF on the variable age s2. For simplic-
ity of notation, we refer to this variable as ”age” hereafter.

To understand how age affects the class distribution,
we introduce a heuristic that determines the age value at
which PartitionF should be split (into two bins), so that
the standard deviations of the liver fat concentrations in
each bin are minimized. Let splitAge denote the cutoff
value and Xy = {x ∈ PartitionF|age of x ≤ splitAge},
Xz = {x ∈ PartitionF|age of x > splitAge} denote the
bins. Further, let n be the cardinality of Xy ∪Xz i.e. of
PartitionF. Then, we define the Sum of weighted Standard
Deviations (SwSD) as

SwSD (Xy, Xz) =
|Xy|
n

σ(Xy) +
|Xz|
n

σ(Xz) (1)

where |Xi| is the cardinality of Xi and σ(Xi) the standard
deviation of the original liver fat values, for i = y, z. Our
heuristic selects Xy, Xz in such a way that SwSD() is
minimized. For PartitionF, the minimum value was 7.44 at
the age of 52, i.e. close to the onset of menopause.

Figure 2: Class Distribution on male participants and on females
older than 52 and younger: the horizontal axis shows the liver fat
concentration in bins of 5 %, while the vertical axis shows the ratio of
participants in each bin among the participants in the whole partition
(PartitionM , F:age≤52 and F:age>52 respectively)

The histogram of Figure 2 depicts the differences in
the class distributions at the cut-off position age of 52.
Next to PartitionM, we show the subpartitions F:age>52
and F:age≤52 of PartitionF. The liver fat concentration
values (continuous variable mrt liverfat s2) are put in bins
with a step of 5 %. We observe that the absolute majority
of female participants in F:age≤52 have no more than 5 %
liver fat concentration and 90 % of them have no more than
10 %, i.e. belong to the negative class A. In contrast, more
than 10 % of the participants in F:age>52 have a liver fat
concentration of more than 10 % and at most 15 %, a bit
less than 10 % have a liver fat concentration of more than
15 % and at most 20 %, i.e. around 20 % of the participants
in F:age>52 belong to the positive class B.

The last entry of Table 1 depicts partition F:age>52,
listing the number of participants in each class. It is clear
that F:age>52 contains most of the positive female partic-
ipants. Hence, we analyze this partition separately.

3.3. Classification Methods

For the classification of the cohort participants we con-
centrate on algorithms that deliver human-understandable
models, since we want to identify predictive ”features”, i.e.
variables and values/ranges in the models. So, we consider
decision trees, classification rules and regression trees.

3.3.1. Decision Trees

We employ the J4.8 decision tree classification algo-
rithm (equivalent to the C4.5 algorithm [23]) of the Waikato
Environment for Knowledge Analysis (Weka) library [9].
This algorithm builds a tree gradually, by splitting each
node (subset of the dataset) on the variable that max-
imizes information gain within that node. The original
algorithm operates only on variables that take symbolic
values and creates one child node per value. However, the
implementation in the Weka library also provides an op-
tion that forces the algorithm to always create exactly two
child nodes: one for the best separating value and one for
all other values. We use this option in our experiments,
because it delivers trees of better quality. Moreover, the
Weka algorithm also supports variables that take numeric
values: a node is split into two child nodes by partitioning
the valuerange of the variable into two intervals. 1

To deal with the skewed distribution, we consider fol-
lowing classification variants:

Naive: The problem of imbalanced data is ignored.

InfoGain: We keep only the top-30 of the 66 variables,
by sorting the variables on information gain towards
the target variable.

Oversampling: We use SMOTE to resample the dataset
with minority-oversampling [4]: for class B, 100 %
new instances are generated, for class C 300 % new
instances are generated, resulting in following distri-
bution A:438, B:216, C:128.

CostMatrix: We prefer to misclassify a negative case
rather than not detecting a positive case, so we pe-
nalize false negatives (FN) more than false positives
(FP). We use the cost matrix depicted in Table 2.

1 It must be noted that all variables of our data subset of SHIP-2
participants were originally modeled as numbers. However, some of
these variables (e.g. gender or stea s2) should be better observed
as symbols rather than numbers, as ordering and mathematical op-
erations (like mean and standard deviation) do not make sense on
them. We have therefore re-declared such variables as symbolic.
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Classified as ⇒ A B C
A 0 1 2
B 2 0 1
C 3 2 0

Table 2: Cost Matrix penalizing misclassification under class skew

3.3.2. Classification Rule Discovery

Classification rules are association rules, the consequent
of which consists of one of the classes. For example, con-
sider following association rules, where & stands for ”AND”:
• stea s2 = 1 & gx rs11597390 = 1 & age ship s2 > 59 →
class = B

• som waist s2 ≤ 80 → stea s2 = 1

The features (variables and value ranges) at the left
of the arrow constitute the rule’s antecedent, while the
feature at the right is the rule’s consequent. The first rule
in the example is a classification rule referring to class
B. The second rule is not a classification rule, since the
variable in the consequent is not a class.

The reader may notice that variables with real values
(e.g. age, waist) are restricted within a specific range. This
range is chosen by the mining algorithm in such a way as to
maximize the support of the rule within the cohort and the
confidence of the rule’s consequent given the antecedent.
The first rule in the example belongs to the results on
PartitionF (see Table 4, described in the next section): out
of the 20 participants supporting the antecedent, 17 belong
to class B. Note that we use the expressions ”[number]
participants support rule [ruledescription] ” and ”[number]
participants support the rule’s antecedent”.

For classification rule discovery we use the Weka algo-
rithm HotSpot. For each class, this algorithm determines
the rules with the best confidence and the optimal bound-
ary values for the features in the antecedent. We have
wrapped the algorithm into a mechanism that selects for
each class only rules supported by at least τ participants.
In our experiments, we use τ = 1

3 , but our interactive tool
(section 5) allows the expert to set this threshold freely.

3.3.3. Regression Trees

We learn regression trees on the original continuous
target variable mrt liverfat s2 using the Weka algorithms
REPTree (Error Pruning Tree), M5P and MP5Rules.

4. Experiments and Findings

We learned models on the full dataset and on each
partition for each of the classification variants described
in 3.3.1 and for HotSpot rules. We also studied tree re-
gression on the complete dataset. However, the predicitive
power of the regression trees was very poor: either the re-
gression tree consisted solely of one node with the mean
of the complete dataset as predictor, i.e. the regression
algorithm could not find appropriate split attributes, or
two or more leaf nodes had very similar prediction values,

whereupon interpreting the tree was very hard. We there-
fore focussed on classification trees and classification rules.
We report on our findings with these methods hereafter.

4.1. Results of Decision Tree Classifiers

For the evaluation of decision tree classifiers, we con-
sider accuracy, i.e. the ratio of correctly classified par-
ticipants to all participants in the selected partition (or
full dataset), the specificity and sensitivity, and the F1-
Score, i.e. the harmonic mean between precision and re-
call. For specificity, precision and recall, we consider as
positive class the two classes B and C together.

The performance of the decision tree classifiers on the
whole dataset was poor: Oversampling achieved best per-
formance with an accuracy of ca. 80 % but an F1-score of
62 %. The best decision trees were found for partition
F:age>52, followed by those for PartitionF, then PartitionM.
The large discrepancy between accuracy and F1-score ap-
pears also in the models of the partitions, underlying that
accuracy scores are unreliable in such a skewed distribu-
tion. Therefore, we do not report on accuracy hereafter.

On partition F:age>52, the overall best decision tree
is achieved by the Oversampling variant. On the larger
PartitionF, best performance was achieved by the decision
tree produced with the InfoGain variant, while the best
decision tree on PartitionM was built with the CostMatrix
variant. The specificity and sensitivity values for these
trees are shown in Table 3, while the trees themselves are
depicted in Figures 3 – 5 respectively and discussed in
subsection 4.3.

Partition Decision
Tree variant

Sensitivity Specificity F1-score

F:age>52 Oversampling 63.5 % 93.9 % 81.5 %
PartitionF InfoGain 52.4 % 94.9 % 69.7 %
PartitionM CostMatrix 38.3 % 86.3 % 53.0 %

Table 3: Best decision trees for the three partitions: best separation
is achieved in F:age>52; PartitionM is the most heterogeneous one,
the performance values are lowest

Table 3 indicates that the decision tree variants per-
form differently on different partitions. It is natural that
Oversampling is beneficial for F:age>52, because it par-
tially compensates the skew problem. PartitionM is very
heterogeneous, all classifiers perform poorly on it. So, we
expect most insights from the decision trees on F:age>52
and PartitionF, where better separation is achieved.

4.2. Discovered Classification Rules

The classification rules found by Hotspot on the whole
dataset were conclusive for class A but not for the posi-
tive classes B, C. These rules are not useful for diagnostic
purposes, so we do not report on them.

The classification rules found on the partitions were
more informative. However, classification rules with only
one feature in the antecedent had low confidence. To en-
sure high confidence, we restricted the output on rules
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3 3

Prediction: B
5 2

Prediction: A
11 0

Prediction: A
3 0

Prediction: B
3 0

Number of incorrectly 
classified Participants

Number of correctly 
classified Participants

Figure 3: Best Decision Tree for F:age>52, achieved by the variant
Oversampling

Ultrasound 
Diagnosis

HbA1C (%)

Waist circum-
ference (cm)

Serum GGT
(µmol/sl)

HbA1C (%)

Smoking Status

Serum GGT
(µmol/sl)

Ser. Uric acid
(µmol/l)

= negative= positive

> 6.8  6.8

  82 > 82

  0.41 > 0.41

> 4.8  4.8

= curr. cigarette
smoker

  curr. cigarette
smoker

  0.84 > 0.84

  286.00 > 286.00

Prediction: C
5 0

Prediction: A
18 1

Prediction: A
13 3

Prediction: A
3 1

Prediction: A
3 2

Prediction: B
33 6

Prediction: A
3 1

Prediction: C
3 1

Prediction: A
214 4

Figure 4: Best Tree for PartitionF, achieved by the variant InfoGain

with at least two features in the antecedent. To ensure a
still high support, we allowed for at most three features.
A selection of high confidence and high support rules for
each partition and class are shown in Tables 4 – 6, respec-
tively. We describe the most important features in the
antecedent of these rules in the next subsection, together
with the most important features of the best decision trees.

4.3. Important Features for Each Subpopulation

The most important features in the decision trees of
Figures 3 – 5 are those closer to the root. For better
readability, the tree nodes in the figures contain short de-
scriptions instead of the original variable names.

On all three decision trees, the root node is the ultra-
sound diagnosis variable stea s2. A negative ultrasound
diagnosis points to the negative class A, but a positive
ultrasound diagnosis does not directly lead to one of the
positive classes B, C. The decision trees of the three par-
titions differ in the nodes placed near the root.

Ultrasound 
Diagnosis

Serum HDL
(mmol/l)

Serum GGT
(µmol/sl)

Serum GGT
(µmol/sl)

Class. for SNP 
rs11597086

HbA1C (%)

= negative= positive

  0.84 > 0.84

Class. for SNP 
rs11597390

Class. for SNP 
rs11597086

Sleep hours 
per day

  0.69 > 0.69

  2.5 > 2.5

= major allele
homozygous

  major allele
homozygous

= hetero-
zygous

  hetero-
zygous

> 5.6  5.6

  7.0 > 7.0

= major allele
homozygous

  major allele
homozygous

Prediction: A
132 9

Prediction: C
5 3

Prediction: B
7 2

Prediction: A
28 10

Prediction: C
5 9

Prediction: B
13 3

Prediction: B
9 1

Prediction: A
8 2

Prediction: B
8 4

Prediction: C
4 2

Figure 5: Best Tree for PartitionM, achieved by the variant Cost-
Matrix

4.3.1. Important Features for PartitionF

In the best decision tree of PartitionF (cf. Figure 4) we
observe that if the ultrasound report is positive and the
HbA1C concentration is more than 6.8 %, the class is C.
The classification rules with high support and confidence
on Table 4) point to further interesting features: a waist
circumference of at most 80 cm, a BMI of no more than
24.82 kg/m2, a hip circumference of 97.8 cm or less char-
acterize participants of the negative class. All 6 partici-
pants having a serum glucose concentration greater than
7 mmol/l and a TSH concentration greater than 0.996 mu/l
belong to class C. Further, severe obesity (a BMI value of
more than 38.42 kg/m2) points to class C with high confi-
dence - but only in combination with other variables.

4.3.2. Important Features for F:age>52

In contrast to the best tree for PartitionF, the best deci-
sion tree for the subpartition F:age>52 (cf. Figure 3) also
contains nodes with SNPs, indicating potentially genetic
associations to fatty liver for these participants. Classifi-
cation rules with high support and confidence for class B
also contain SNPs, as can be seen on Table 5.

Similarly to PartitionF, high BMI values point to a pos-
itive class when combined with other features: on Table 5,
we see that all four participants with stea alt75 s2 = 3

(i.e. a positive ultrasound diagnosis combined with a crit-
ical ALAT value) and a BMI larger than 38.42 kg/m2 be-
long to class C. A similar association holds for stea alt75 s2

= 3 combined with a high waist circumference (> 124 cm).
19 out of 20 participants in class B having a positive ul-
trasound diagnosis, a genetic marker gx rs11597390 = 1

and a serum HDL concentration of at most 1.53 mmol/l.

4.3.3. Important Features for PartitionM

The role of the ultrasound report in predicting the neg-
ative class is the same for PartitionM (cf. Figure 5) as for
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Rule antedecedent Participants
supporting
antecedent

Target
class of
the rule

Participants sup-
porting the rule

Rule
confi-
dence

Variable 1 Variable 2 Variable 3 absolute
number

percentage
in class

som waist s2 ≤ 80 - - 132 A 132 52 % 100 %
som bmi s2 ≤ 24.82 - - 109 A 109 43 % 100 %
som huef s2 ≤ 97.8 - - 118 A 117 46 % 99 %
stea s2 = 0 - - 218 A 214 84 % 98 %
stea alt75 s2 = 0 - - 202 A 198 78 % 98 %
stea s2 = 1 gx rs11597390 = 1 age ship s2 > 59 20 B 17 40 % 85 %
stea alt75 s2 = 1 hrs s s2 > 263 age ship s2 > 59 20 B 17 40 % 85 %
stea alt75 s2 = 1 hrs s s2 > 263 ldl s s2 > 3.22 20 B 17 40 % 85 %
stea s2 = 1 age ship s2 > 66 tg s s2 > 1.58 17 B 14 33 % 82 %
stea s2 = 1 age ship s2 > 64 hrs s s2 > 263 17 B 14 33 % 82 %
gluc s s2 > 7 tsh s2 > 0.996 - 6 C 6 35 % 100%
som bmi s2 > 38.42 age ship s2 ≤ 66 asat s s2 > 0.22 6 C 6 35 % 100%
som bmi s2 > 38.42 sleeph s2 > 6 blt beg s2 ≤ 38340 6 C 6 35 % 100%
som bmi s2 > 38.42 sleeph s2 > 6 stea s2 = 1 6 C 6 35 % 100%
hrs s s2 > 371 sleepp s2 = 0 ggt s s2 > 0.55 6 C 6 35 % 100%

Table 4: Best HotSpot Classification Rules (maxLength = 3) for PartitionF (excerpt)

Rule antedecedent Participants
supporting
antecedent

Target
class of
the rule

Participants sup-
porting the rule

Rule
confi-
dence

Variable 1 Variable 2 Variable 3 absolute
number

percentage
in class

crea u s2 ≤ 5.39 stea s2 = 0 - 75 A 75 57 % 100 %
crea u s2 ≤ 5.39 stea alt75 s2 = 0 - 72 A 72 55 % 100 %
som waist s2 ≤ 80 - - 54 A 54 41 % 100 %
som bmi s2 ≤ 24.82 - - 50 A 50 38 % 100 %
crea u s2 ≤ 5.39 ggt s s2 ≤ 0.43 - 50 A 50 38 % 100 %
stea s2 = 1 ggt s s2 > 0.48 ggt s s2 ≤ 0.63 15 B 15 38 % 100 %
stea s2 = 1 gx rs11597390 = 1 hdl s s2 ≤ 1.53 20 B 19 48 % 95 %
stea s2 = 1 gx rs11597390 = 1 fib cl s2 > 3.4 15 B 14 35 % 93 %
crea s s2 ≤ 61 som waist s2 > 86 stea s2 = 1 15 B 14 35 % 93 %
stea s2 = 1 gx rs11597390 = 1 hrs s s2 > 261 20 B 18 45 % 90 %
som bmi s2 > 38.42 age ship s2 ≤ 66 - 4 C 4 33 % 100%
som bmi s2 > 38.42 stea alt75 s2 = 3 - 4 C 4 33 % 100%
som huef s2 > 124 stea alt75 s2 = 3 - 4 C 4 33 % 100%
som waist s2 > 108 gluc s s2 > 6.2 - 4 C 4 33 % 100%
stea alt75 s2 = 3 som bmi s2 > 37.32 - 4 C 4 33 % 100%

Table 5: Best HotSpot Classification Rules (maxLength = 3) for F:age>52 (excerpt)

PartitionF. As with the best tree for F:age>52, the best
tree for PartitionM contains nodes with SNPs and serum
GGT value ranges. Such features are also in the antecedent
of top Hotspot rules (cf. Table 6): a Serum GGT con-
centration of more than 1.9µmol/sl in combination with
creatinine concentration of at most 90 mmol/l or a throm-
boplastin time ratio (quick s2) of more than 59 % point
to class C. Similarly, positive ultrasound diagnosis and a
serum HDL concentration not exceeding 0.84 mmol/l point
to class C.

4.3.4. Conclusion on important features

The decision trees and classification rules give insights
into features that seem diagnostically important. How-
ever, the medical expert needs additional information to
decide whether a feature is worth further investigation.
In particular, decision trees highlight the importance of
a feature only in the context of the subtree it is located;
a subtree describes a subpopulation that is usually very

small. In contrast, classification rules return information
on larger subpopulations. However, these subpopulations
may overlap; for example, the first four rules on class
C for PartitionM (cf. Table 6) may refer to the same 6
participants. Moreover, unless a classification rule has a
confidence close to 100 %, there may be participants in
the other classes that also support it. Hence, to decide
whether the features in the rule’s antecedent deserve fur-
ther investigation, the expert also needs insights on the
rule’s statistics for the other classes as well. To assist the
expert in this task, we propose InteractiveRuleMiner, a tool
that discovers classification rules for each class and delivers
information on the statistics of these rules for all classes.

5. Interactive Rule Miner

Classification rules, as those depicted in Tables 4 - 6
can provide valuable insights on potentially prevalent fea-
tures (variables and their value ranges) for different sub-
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Rule antedecedent Participants
supporting
antecedent

Target
class of
the rule

Participants sup-
porting the rule

Rule
confi-
dence

Variable 1 Variable 2 Variable 3 absolute
number

percentage
in class

stea alt75 s2 = 0 - - 106 A 101 55 % 95 %
stea s2 = 0 - - 138 A 131 72 % 95 %
ggt s s2 ≤ 0.52 - - 79 A 73 40 % 92 %
hrs s s2 ≤ 310 ggt s s2 ≤ 0.77 - 81 A 74 40 % 91 %
som waist s2 ≤ 90.8 - - 79 A 72 39 % 91 %
som huef s2 > 108.1 age ship s2 > 39 crea u s2 > 7.59 28 B 22 33 % 79 %
som bmi s2 > 32.29 hdl s s2 > 0.94 ATC C09AA02 s2 = 0 29 B 22 33 % 76 %
som bmi s2 > 32.29 hgb s2 > 8.1 gout s2 = 0 29 B 22 33 % 76 %
som waist s2 > 109 sleeph s2 ≤ 8 jodid u s2 > 9.44 29 B 22 33 % 76 %
som huef s2 > 108.1 hdl s s2 > 0.97 crea u s2 > 5.38 29 B 22 33 % 76 %
ggt s s2 > 1.9 crea s s2 ≤ 90 quick s2 > 59 6 C 6 40 % 100%
ggt s s2 > 1.9 crea s s2 ≤ 90 chol s s2 > 4.3 6 C 6 40 % 100%
ggt s s2 > 1.9 crea s s2 ≤ 90 fib cl s2 > 1.9 6 C 6 40 % 100%
ggt s s2 > 1.9 crea s s2 ≤ 90 crea u s2 > 4.74 6 C 6 40 % 100%
ggt s s2 > 1.9 tg s s2 > 2.01 som waist s2 > 93.5 6 C 6 40 % 100%

Table 6: Best HotSpot Classification Rules (maxLength = 3) for PartitionM (excerpt)

populations of the cohort under study. However, as can be
easily seen in Tables 4 - 6 the number of rules produced is
large, the contents of the rules overlap and some features
are present under each of the three classes. Hence, the
medical expert needs inspection aids to decide which rules
are informative and which features should be studied fur-
ther. Our InteractiveRuleMiner is an interactive mining tool
that allows the expert to (a) discover classification rules
subject to frequency constraints, inspect the frequency of
those rules (b) towards each class and (c) against the un-
labeled part of the cohort, and (d) study the statistics of
each rule for the values of selected variables. We describe
these functionalities below, referring to the screenshot on
Figure 6.

The user interface of InteractiveRuleMiner has six areas.
The fill-in area ”Settings” (upper left) allows the medi-
cal expert to specify the criteria for rule mining before
pressing the button ”Build Rules”; below this area appear
then the discovered rules. The area ”Sorting preference”
(next to the area ”Settings”) allows the expert to specify
whether the output should be sorted on confidence of the
rule’s consequent (selected class) towards the antecedent,
on support of the whole rule, or rather alphabetically for
better overview of overlapping rules.

The mining criteria concern the dataset (choosing be-
tween the whole dataset versus one of the partitions), the
class for which rules should be chosen (drop-down list
Class) and the constraints with respect to this class: Min
Value Count , Max Rule Length, Max Branching Factor and
Min Improvement used as follows. The Min Value Count is
either an absolute number or a percentage over the num-
ber of cohort participants in the selected class. The miner
constructs the rules by gradually adding features (variables
and value intervals) in the antecedent, while preserving the
Min Value Count constraint. When the miner adds fea-
tures gradually, it has several candidates to choose from.
For example, consider the rule ”stea s2 = 1 & hrs s s2

> 263 −→ B” (see 3rd rule in the output listed on the
lower left corner of Figure 6), which has a confidence c:
0.55 (31 out of 56 participants) towards the target class B.
The miner considers all features that are supported by Min
Value Count among the participants supporting ”stea s2

= 1”, but rejects those that improve the confidence of the
target class (consequent) for less than Min Improvement.
The remaining candidates are sorted on support and the
top ones are chosen - as many as the Max Branching Fac-
tor. An example of such an expansion is ”stea s2 = 1 &
gx rs11597390 = 1” (see second rule in the output list on
Figure 6); its confidence towards class B is c:0.58. The
miner extends antecedents with additional features up to
the Max Rule Length threshold.

The output list of an execution run (area below the
”Settings”) is scrollable and interactive. When the expert
clicks on a rule, the top middle area ”Summary Statistics for
selected Rule” is updated. The first row shows the distri-
bution of the cohort participants among the classes for the
whole dataset (or partition!), while the second row shows
how the participants supporting the rule’s antecedent (col-
umn ”All” in the second row) are distributed among the
classes. Hence, the expert can specify the discovery of
classification rules for one of the classes and then study
how often the antecedent of each rule appears among the
participants in the other classes. Clearly, a rule that is
supported by most of the participants of the selected class
(class B on Figure 6) is interesting, but the rarer it ap-
pears among the participants of the other classes the more
interesting it is. For example, the rule antecedent ”stea s2
= 1 & hrs s s2 > 263” is supported by 31 + 14 positive
participants and 11 negative ones, and is most frequent
for the positive class B (cf. histogram in Figure 6). In
the top middle area, we see that 73.8 % of the class B
participants support this rule (31 out of 42), while this
percentage drops to 4.3 % for the negative class A.

The areas of InteractiveRuleMiner described thus far de-
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Figure 6: The InteractiveRuleMiner: Classification rules are discovered for PartitionF for class B and shown in the bottom left area. For the
selected (marked) rule ”stea s2 = 1 & hrs s s2 > 263 → B”, we see the distribution of the participants in the rule’s antecedent among all
three classes in absolute values (top middle area) as histogram on the values of the target variable (bottom right).

liver information on the rules found on labeled data. How-
ever, not all participants in the cohort have been subjected
to liver MRI. Hence, it is also of interest to know the dis-
tribution of the unlabeled participants who support the
antecedent of a given rule. The area ”Histogram” can be
used to this purpose: the expert chooses a further variable
from the interactive area ”Select variable” in the upper
right corner and can then see how the values of these vari-
able are distributed among the study participants - both
the labeled ones and the unlabeled ones; the latter are
marked as ”Missing” in the histogram’s legend. For plot-
ting the histograms we make use of the free Java chart
library JFreeChart [6].

On Figure 6, the expert has not chosen any variable,
hence the target variable is used by default, and only the
distribution of labeled participants is visible. On Figure 7,
we see the distribution of both labeled and unlabeled par-
ticipants supporting the antecedent of our example rule
”stea s2 = 1 & hrs s s2 > 263” with respect to the sec-
ond part of the antecedent, i.e. the variable hrs s2 for
values 263 and more. The value distribution among the
labeled participants shows that the likelihood of the neg-
ative classes drops as the values of hrs s2 increase.

Figure 8 also shows a histogram for the example rule.
However, this time the variable selected in the top right

area is not part of the rule. We see a histogram of labeled
and unlabeled participants for the variable ldl s s2. As
on Figure 7, the histogram still shows how the labeled par-
ticipants supporting the antecedent ”stea s2 = 1 & hrs s s2
> 263” are distributed among the three classes.

The distribution of participants on Figure 8 is bimodal
with respect to the negative class. A study of further labels
in this subpopulation, especially among participants in the
second bin may help explaining the bimodality. Hence,
the visualization of the participants’ statistics for selected
rules can deliver indications on subpopulations that should
be monitored closer.

6. Discussion and Outlook

To date, analysis of population-based cohort data is
mostly hypothesis-driven. In this study, we have presented
a new mining workflow and interactive mining tool for
data-driven analysis of population-based cohort data on
the example of hepatic steatosis.

Our mining workflow encompasses steps (i) for the iden-
tification of subpopulations that exhibit different distri-
butions with respect to the target variable, (ii) for the
classification of each subpopulation, taking class skew into
account, and (iii) for the identification of variables that
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Figure 7: InteractiveRuleMiner: Classification rules as on Figure 6 with additional information on the distribution of the unlabeled participants
supporting the rule antecedent ”stea s2 = 1 & hrs s s2 > 263” among the participants supporting only the second feature of the antecedent

Figure 8: InteractiveRuleMiner: Classification rules as on Figure 6 with additional information on the value distribution for variable ldl s s2

among the labeled and unlabeled participants supporting the rule antecedent ”stea s2 = 1 & hrs s s2 > 263”
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are associated with the outcome. Our workflow has shown
that it is imperative to (a) identify subpopulations before
classification, so as to reduce skew, and to (b) drill into
the derived models, so as to identify important variables
and subpopulations worth studying further.

To assist the human expert in the latter objective (b),
we have developed the InteractiveRuleMiner. The Interac-
tiveRuleMiner is an interactive tool that allows the user to
study classification rules closer and understand how the
cohort participants who support each rule are distributed
across the three classes. This inspection step is essential
for the identification of not yet known associations between
some variables the target outcome. These variables must
be then investigated further - in hypothesis-driven studies.
Hence, our mining workflow and InteractiveRuleMiner bear
the potential of data-driven analysis in delivering insights
on a multifactorial disorder and in hypothesis generation
for hypothesis-driven studies.

With respect to the concrete multifactorial disorder,
our findings verify the potential of our data-driven ap-
proach, since most variables in the top-positions of our
decision trees and classification rules have been shown
earlier in independent studies to be associated with hep-
atic steatosis2. In particular, indices of fat storage in
the body (BMI, waist circumference) and the liver en-
zyme GGT were proposed by Bedogni et al. as a reliable
”Fatty Liver Index” [2]. The SNPs rs11597390, rs2143571
and rs11597086 have been shown in [31] to be among the
”Independent SNPs Associated with Liver-Enzyme Lev-
els with Genome-wide Significance in Combined GWAS
Analysis of Discovery and Replication Data Sets” (Table
3 of [31]. Concerning the impact of alcohol consumption,
Baumeister et al. mention that ”. . . the toxic effects of
ethanol on the liver are well established . . . ” but point
out that ”The literature suggests an even greater role of
overweight than heavy drinking in the accumulation of fat
in the liver 3” [1] (1st page); indeed, a variable related to
alcohol consumption only appears in our decision tree on
F:age>52 (cf. Figure 3) and not among our top classifica-
tion rules, where we rather see variables associated with a
person’s weight and adipositas (cf. variables: som bmi s2,

som huef s2, som waist s2 in all figures and tables with
findings). The subpopulation F:age>52 itself has been
identified without using prior knowledge of the seman-
tics of this subpopulation, but it is remarkable that the
age of 52 is close to the onset of menopause – in [30] it
has been shown that menopausal status is associated with
hepatic steatosis. Our findings also verified a further fact
known to the medical experts through independent obser-
vation: the sonography outcome (cf. variables: stea s2,

stea alt75 s2 in all figures and tables with findings) is as-
sociated with the liver fat concentration found by MRI, yet

2The studies we cite hereafter did not consider exactly the same
set of variables as we did, so it is natural that they did not find some
of the associations we identified, and that they found associations
that we did not find.

3In [1], this statement is supported through citation of [3].

the ultrasonography alone does not predict hepatic steato-
sis [3, 2].

Did our approach deliver new insights? Our algorithms
do not simply deliver variables associated to the outcome,
but also identify the value intervals that are associated
with a specific class, see e.g. the value intervals of the BMI
associated with the class B for PartitionM (Table 6) and
with the classes A and C for F:age>52 (Table 5). These
intervals do not mean that a person with BMI inside the
specific interval does belong to the corresponding class, but
may rather serve as starting point for hypotheses-driven
analyses.

A limitation of our approach concerns the interaction
with the medical expert. The InteractiveRuleMiner has
been designed with the demands of the medical expert
in mind, but it has not yet been evaluated by medical ex-
perts. As a result, we maximized flexibility through a set
of parameters, but it remains to be shown whether the
presentation of these parameters is intuitive to the user.
Also, the visualization aids (histograms) are rudimentary
and must yet be evaluated with respect to the expert’s
intuition. To this purpose, we intend to set up an appro-
priate environment in which an expert will interact with
the tool and will give us feedback. With respect to the
concrete findings for hepatic steatosis, a shortcoming is
that some confounders for chemical shift MR fat quantifi-
cations have not been corrected in the target variable we
used (cf. beginning of section 3.1), hence the exact value
intervals of the associated variables should not be taken
at face value. This is not a shortcoming of the approach
itself, though; our next step is to apply it on the corrected
dataset.

Our approach allows for the inspection of subpopula-
tions in two moments. Prior to data mining, we identify
subpopulations that exhibit different class distributions.
During data mining, our InteractiveRuleMiner highlights
the subpopulation supporting each classification rule; these
are overlapping subpopulations. The overlap among sub-
populations is not necessarily a disadvantage, especially
for very small subpopulations. However, working with
overlapping datasets may be unintuitive to an application
expert. Therefore, we investigate the potential of cluster-
ing methods for the identification of further subpopula-
tions prior to data mining, so as to perform classification
on each cluster independently.
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