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Abstract. Mining data with minimal annotation costs requires efficient active
approaches, that ideally select the optimal candidate for labelling under a user-
specified classification performance measure. Common generic approaches, that
are usable with any classifier and any performance measure, are either slow like
error reduction, or heuristics like uncertainty sampling. In contrast, our Proba-
bilistic Active Learning (PAL) approach offers versatility, direct optimisation of
a performance measure and computational efficiency. Given a labelling candi-
date from a pool, PAL models both the candidate’s label and the true posterior
in its neighbourhood as random variables. By computing the expectation of the
gain in classification performance over both random variables, PAL then selects
the candidate that in expectation will improve the classification performance the
most. Extending our recent poster, we discuss the properties of PAL and perform
a thorough experimental evaluation on several synthetic and real-world data sets
of different sizes. Results show comparable or better classification performance
than error reduction and uncertainty sampling, yet PAL has the same asymptotic
time complexity as uncertainty sampling and is faster than error reduction.

1 Introduction

Recently, the application of machine learning to large data pools and fast data streams
has gained attention. This application often requires classification of data where fea-
tures are cheap but labels are costly [8]. Examples are applications where features are
obtained from an automated process but labels require human annotation efforts. Active
learning (AL) [15, p. 4] addresses such applications, where the machine learning system
can actively select instances for labelling, rather than passively processing a given set
of labelled instances. Its tasks are to decide a) for which instance to request a label, and
b) whether to continue labelling at all, given some labels have already been acquired.
The ideal active learning strategy should select those instances first that, once incor-
porated into the training data, will result in the highest gain in terms of a classification
performance measure. Furthermore, it provides a quantification of this performance
gain, needed for a sound answer to the stop-criterion related second question. It there-
fore considers the already acquired amount of training data. Finally, it is fast, requiring
solely linear asymptotic computational time per instance with respect to the pool size,
in order to enable its application in large data pools and fast data streams. Active learn-
ing strategies that are usable in conjunction with any classifier technology provide some



of the above qualities. However, as discussed further in Section 2, they do not offer a
combination of all these qualities in one single approach.

We address this challenge by a novel, probabilistic active learning (PAL) technique
for classification that combines the above qualities and constitutes an alternative to
other generic strategies like error reduction or uncertainty sampling. It is not limited to
a particular classifier technology, and usable with any point [12] performance perfor-
mance measure. Given a pool of candidates, it computes for each candidate the expected
gain in classification performance from obtaining its label. This expectation models the
candidate’s label and the true posterior at its location as a random variables, and uses
likelihood weights according to the already obtained labels in the candidate’s neigh-
bourhood. Subsequently, it selects the optimal candidate under this expected overall
performance gain for labelling. This active selection from a pool requires asymptotic
computational time that is solely linear in the size of the pool, as fast uncertainty sam-
pling approaches do. While deriving stop-criteria is not within the scope of this paper,
but our quantification of a label’s expected impact provides a fundamental first step.

This paper is a full-version of our recent poster [10], extending it by a more detailed
discussion of related work, an additional discussion of PAL’s properties, and additional
experiments. It is structured as follows: In the next section, we provide the necessary
background and discuss related approaches. In section 3, we present our probabilistic
active learning approach. In section 4, we report on our evaluation results, where we
compare PAL to the strategy considered to be optimal for minimising classification
error (error reduction), and to a popular fast heuristic strategy (uncertainty sampling). !

2 Background and Related Work

This paper addresses pool-based active learning (AL) for binary classifiers, as described
in [15, p. 9] and [4]. In this scenario, an active classifier has access to a pool of unla-
belled instances &/ = {(x,.)}. From this pool of labelling candidates it repeatedly se-
lects an instance (z*,.) for labelling. Upon receiving its label y*, the instance (z*, y*)
is moved to a pool of labelled instances £ = {(x,y)}, the classifier is retrained, and
the process is repeated. There exist various approaches for this scenario, recent surveys
are provided in [15], [6], [4] and [14]. We will focus on popular families of approaches
that are usable with any classification technique, and discuss the ones most related to
our approach: error reduction, uncertainty sampling and query-by-transduction.
Expected error reduction (ER) is a decision-theoretic approach. It considers the im-
provement in classification performance by selecting the candidate, that has the minimal
expected classification error if incorporated into the training pool. The seminal work of
[5], which coined the term “statistically optimal active learning”, derived closed-form
solutions for optimal data selection for two specific learning methods. In contrast, the
approach suggested in [13] is generic, both with respect to arbitrary performance mea-
sures and classifiers: using a Monte Carlo sampling approach, it estimates the perfor-
mance on a labelled validation sample V), rather than integrating over the full feature
distribution @r(z). It uses the posterior estimate p = Pr(y|z) provided by the current

! For additional resources please consult http: //kmd.cs.ovgu.de/res/pal/.



classifier as proxy for the true posterior Pr(y|z) that is required for the expectation over
the label realisations y. However, as discussed in [2], this proxy is not reliable if solely
few labels are available, requiring regularisation approaches such as using Beta priors.
Furthermore, the labelled (or self-labelled) validation sample }V must be representative
of the data. Not only is this difficult, in particular at the beginning with few available la-
bels and a still unreliable classifier, but it also makes error reduction prohibitively slow
[14] for using it in applications that require fast processing of big amounts of data, as
even for incremental classifiers its asymptotic time complexity is O(|V] - [U]).

In comparison, a faster method [15, p.64] is uncertainty sampling (US), introduced
in [11]. It uses simple uncertainty measures, like sample margin, confidence, or entropy
as proxies for a candidate’s value, and selects the candidate with maximal uncertainty.
However, these proxies do not consider the number of similar instances on which pos-
terior estimates are made. This is problematic, as Figure 1 (next page) illustrates on
four exemplary active learning situations. These situations could, for example, occur
simultaneously in different regions of a feature space such that the next label must be
actively requested in either of them? The first (in Roman numeral) and second situation
differ in the number of obtained labels (6 vs. 1), but lead to the same posterior estimate
Pr(+|x) = 1, as all obtained labels are positive. Uncertainty sampling is indifferent be-
tween them, as both entropy and confidence are zero. This indicates equal and absolute
certainty, which is not justified as in II the single positive label can simply be due to
chance, even if the true posterior of the positive class is actually smaller than 0.5 and the
classifier is wrong. In contrast, in I a high true positive posterior is indeed very likely,
and additional labels have less impact on the classifier. Similarly, in IV the classifier’s
prediction is quite reliable, but uncertainty according to measures like entropy or con-
fidence is maximal. This leads to sampling in regions of high Bayesian error rate, even
if the classifier can not be further improved there.

Some of the many existing classifier-specific AL approaches offer high processing
speeds for particular applications. However, they require classifier selection to be made
with respect to the available active learning strategy, as sample reusability between
different types of classifiers for selector and consumer strategies is an open question
[16]. Finally, even recently proposed classifier-specific approaches are mostly either
information-theoretic (i.e. agnostic to the decision task at hand) or use the most likely
or most pessimistic posterior under the current model, thus ignoring the reliability as-
sociated with this estimate, as for example [7]. A very recent information-theoretic
approach that considers the reliability of a predictive model is Query-By-Transduction
(QbT) [9]. QbT is based on conformal prediction and selects the instances with respect
to the p-values obtained using transduction. This quantification of the reliability us-
ing p-values is related to ours, although we use the likelihood weights of the posterior
estimates and follow a decision-theoretic Bayes-optimal active learning approach that
directly optimises a classification performance measure.

2 For simplicity, this illustration assumes conditional independence of the posterior from the
feature given the region, i.e. Pr(y|z, z) = Pr(y|z), where y is the class, z the feature vector,
and z the region. Thus no further differentiation can be made within a region. We also assume
equal numbers of instances in all regions, making accuracy everywhere equally important.



Fig. 1. Different AL situations, where entropy- or confidence-based uncertainty measures differ-
entiate only on a class’ relative (vert.) but not on all classes’ toral (horiz.) number of labels.
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3 Probabilistic Active Learning

Following the common smoothness assumption [3], we consider that an instance x in-
fluences the classification the most in its neighbourhood. Thus, the impact of an addi-
tional label primarily depends on the already obtained labels in its neighbourhood. We
summarise these by their absolute number n, and the share of positives p therein, yield-
ing the label statistics [s = (n,p). Here, n is obtained by counting the similar labelled
instances for pre-clustered or categorical data (as for the partitions in Figure 1), or ap-
proximated by frequency estimates such as kernel frequency estimates for smooth, con-
tinuous data. Thus, in x’s neighbourhood, n expresses the absolute quantity of labelled
information, whereas the density d, of unlabelled instances quantifies the importance
of this neighbourhood, i.e. the share of future classifications that will take place therein
compared to other regions of the feature space.

Given a labelling candidate (z,.) from a pool of unlabelled instances I/ for a user-
specified point classification performance measure [12] like accuracy, we want to com-
pute the expected overall gain in classification performance if requesting its label. This
requires knowledge of its label statistics £, but also of its label y and the true posterior
p of the positive class within its neighbourhood. As the latter values of y and p are not
directly accessible, we use a probabilistic approach and model Y and P as random vari-
ables. This allows us to compute the expected value of the gain in performance over all
different true posteriors and label realisations, which we denote as probabilistic gain’
(pgain). Finally, we weight it by the neighbourhood’s density d, (over labelled and un-
labelled data) to consider the importance of the neighbourhood on the whole data set,
quantifying the overall expected performance change. Comparing the overall expected
performance change of all candidates, we select the optimal candidate for labelling.

We now first provide the modelling and derive the necessary equations, present the
framework of Probabilistic Active Learning (PAL ) with its pseudo-code, and close with
discussing its properties.

3 We do this to differentiate it from the expected gain as in expected error reduction methods
like [2], where expectation is solely over label outcomes, but not over the true posterior.



3.1 Probabilistic Gain Calculation

Given a candidate (z, .), the label statistics /s summarise the obtained labels in its neigh-
bourhood. We model the true posterior P of the positive class (y = 1) in this neighbour-
hood as a Beta-distributed random variable, whose realisation p is itself the parameter
of the Bernoulli distribution controlling the label realisation y € {0, 1} of any instance
within the neighbourhood. Consequently, the number of positives n - p among the n al-
ready obtained labels in the neighbourhood is the realisation of a Binomial-distributed
random variable:

P~ Beta, pi1mn-(1-p)+1 (D
Y ~ Bernoulli, = Ber, 2)
(n - p) ~ Binomial,, , 3)

The true posterior’s Beta distribution above results from its normalised likelihood given
the already observed labels, that is

wilp) = — L@BIP) o y
T A @

_ I'(n+2) P (1 —p) (D) B
S I'(n-p+1)-I'(n-(1—p)+1) = Betaa,5(p) 5)

where the parameters « =n-p+ 1and 8 = n - (1 — p) + 1 of the Beta-distribution’s
pdf Beta,, g(p) are obtained by following a Bayesian approach under a uniform prior
for P such that ¢() is a constant function, and by using the probability mass function
according to Eq. 3 for the likelihood L(p|s),and (1 +n) - I'(n+ 1) = I'(n + 2).

We take the expectation on the performance gain over these two random variables,
yielding the candidate’s probabilistic gain (pgain), that defines the expected change of
the performance measure for its neighbourhood:

pgain(ls) =E, [Ey [gainp(&, y)] ] 6)
1
= / Betaq, g(p) - Z Ber, (y) - gain, (fs,y) dp @)
0 ve{0.1}

Here, gain,, (£, y) is the candidate’s (=, .) performance gain given its label realisation y
and the neighbourhood’s true posterior p:

: np + .
gain, () = pert, (L) et ) ®

The definition of Eq. 7 and 8 allow the use of any point performance measure (see
e.g. [12]) for perf. An example is accuracy (acc), defined as

perf,(p) =1 —errp(p) =1 — {P p<0.5 o

1—p otherwise



where err,, (p) is the error rate under Bayes’ optimal classification, given a true posterior
p and observed posterior p of the positive class.
Plugging this in Eq. 7 yields the probabilistic accuracy gain

pgainacc ( [s) =

— /0 1 Betaas(p) » Bery(y) (errp(ﬁ) — Oty (TZT 1@/)) v

y€{0,1}

which we compute by trapezoidal numerical integration over p.

Finally, we weight each candidate’s probabilistic gain with the density d, over la-
belled and unlabelled instances in its neighbourhood, and select the candidate with the
highest density-weighted probabilistic gain for labelling:

z* = arg max <dz . pgainacc([sx)) (10)
el

3.2 PAL Algorithm

The pseudo-code for the resulting probabilistic, pool-based active learning algorithm is
given in Figure 2. Iterating over the candidate pool ¢/ (Lines 2-6), for each labelling
candidate « one computes its label statistics s, = (ng,p,), its density weight d,,
and using numerical integration its probabilistic gain, which is weighted by its density
weight to obtain g,. Finally, the candidate with the highest g, is selected (Line 7).

Fig. 2. The PAL Algorithm
1: function POOLBASEDPALU,L)
2 for x € U do
3 (na, Pe)  labelstatistics(z, L)
4 dy + densityweight(z, LUU)
5: 9o < pgain((naz, Pz)) - do
6 end for
7 return arg max,c,,(gz)
8: end function

3.3 PAL’s Properties

Statistical Optimality in Disjoint Neighbourhoods For a disjoint neighbourhood
concept, like in pre-clustered or categorical data, where instances are partitioned such
that instances having an influence on each others’ classification belong to the same
subset, the density-weighted probabilistic gain of a candidate corresponds precisely to
the expected change in overall performance from acquiring the candidate’s label. Thus
selecting the candidate with highest probabilistic gain is statistically optimal.



For smooth, continuous neighbourhoods, the density-weighted probabilistic gain is
the expected change at the candidate’s location, serving as an approximation of the
overall performance gain. We use this latter concept in our evaluation, as it applies to
more data sets and is better comparable to the baseline active learning algorithms.

Computational Efficiency In this subsection, we discuss the asymptotic (with respect
to data set size) computational time complexity of PAL and related algorithms for ac-
tive learning of binary, incremental classifiers. For selecting a candidate from a pool ¢/
of labelling candidates, the PAL algorithm above needs to iterate over all candidates in
the pool (Lines 2 — 6). Each iteration consists of 1) querying labelstatstics, 2) querying
density weights, and 3) computing the probabilistic gain. The first step requires absolute
frequency estimates of labels in the candidate’s neighbourhood, similar to the relative
frequency estimates needed by entropy or confidence uncertainty measures. These are
obtained in constant time by probabilistic classifiers. The second step requires density
estimates over all instances, that is over labelled £ and unlabelled I/ ones. Precomputing
these density estimates once for all later calls of PAL leads to constant query time, as in
the pool-based setting the union £ U is constant. The third step consists of a numeric
integration over the true posterior p and a summing over possible label realisations y.
Both factors do not depend on the data set size. We used fifty numeric integration steps
in all our experiments to get highly precise estimates for expected classification accu-
racy gain, resulting in a constant factor of O(50 - 2) per probabilistic gain computation.
Overall, the iteration over the pool is done in O(|i/]) time.

Selecting the candidate with highest density-weighted probabilistic gain in Line 7
is done in constant time, by using a sweep line approach and storing the maximal value
and its corresponding candidate in the previous for-loop.

Overall, PAL requires O(|{]) time for selecting a candidate from the pool. Uncer-
tainty sampling, using probabilistic classifiers and entropy or confidence uncertainty
measures, requires asymptotically the same time, but due the simplicity of its compu-
tation with a smaller constant factor involved. In contrast, error reduction as discussed
in [15], requires O(|U| - |V]) time, where V| = ||, as V needs to be a representative
sample of the data.

Characteristics of the Probabilistic Gain For a better understanding of the probabilis-
tic gain function, Figure 3 shows the computed probabilistic gain (in terms of accuracy)
for different label statistics, i.e. combinations of different numbers of already obtained
labels n and observed posteriors Iﬁr(+|x). The following main characteristics of the
curve underline its reasonable behaviour:

Monotonicity with variable n: With increasing n and a fixed 2r(+|x) the probabilis-
tic gain decreases, because it is more likely that the posterior already is correct.
Symmetry with respect to #r(4-|x) = 0.5: Evaluating accuracy, pos. and neg. labels

count the same, i.e. the probabilistic gain is equal for r(+|x) and Pr(—|z).
Zero for irrelevant candidates: If one label would not change the decision in its neigh-
bourhood, the accuracy remains the same. Thus, gain and probabilistic gain are 0.



This figure is inspired by an illustration of Settles, where different uncertainty mea-
sures are plotted as functions of the posterior of a class (see figure 2.4 in [15, p. 15]).
Comparing the least confident curve (plot (a) in [15]), it behaves nearly similarly as our
probabilistic gain for n = 1, but does not change with n.

Fig. 3. Illustration of the probabilistic gain (pgain) as a function of @r(+|x), which is the observed
posterior of the positive class, and of n, which is the number of already obtained labels.

4 Experimental Evaluation

From its theoretical characteristics, we expect PAL to be comparable to error-reduction
in terms of classification performance, yet faster, and we expect PAL to be better than
uncertainty sampling. This section will now verify these characteristics empirically. Af-
ter outlining the experimental setup, we will discuss the results in the second subsection.

4.1 Evaluation Settings

We compare our new base method PAL with expected error-reduction (in the extended
variant proposed by Chapelle in [2], denoted Chap), with uncertainty sampling (using
confidence [15] as uncertainty measure, den. Uncer), and with random sampling (den.
Rand). While error-reduction is considered as one of the best available AL-methods
[15, p. 64], uncertainty sampling is fast and very popular for large or streaming data.

We used Gaussian kernels for frequency estimation, and a Parzen window classi-
fier as in [2] for ensuring comparability with [2]. So, the estimated label frequencies
label Freq., ¢ € {+,—} at an instance z for the the positive £ and the negative class
L_ are calculated by an unnormalised Gaussian function. These frequencies build the
label statistics n = label Freqy + label Freq_ and p = label Freqy /n.

T}
labelFreq.(x) = Z exp <_|$33||>

202
z' €L,



Our framework starts without initial labels, and finishes after 40 label requests. The
classifiers, implemented in Octave/MATLAB and run separately on a cluster, use the
same pre-tuned, data set-specific bandwidth, and are re-evaluated in each of the 40 steps
on the same, dedicated (labelled) test sample. This ensures that only the difference in the
active learning strategy is influencing the performance. For better performance assess-
ment, we generated 100 random training and test subsets for each data set, and averaged
the results. Evaluation is done on 2 synthetic (based on [2]) and 6 real-world data sets
(from [1]). The main characteristics (number of instances, number of attributes), such
as training and test set size and the o of the Parzen window, are summarised in Table 4.
The synthetic data sets consist of 424 clusters, arranged in a checker-board formation.
While the clusters are low-density-separated in Che, they are adjoined in Che2. The
real-world data sets are Mammographic mass (Mam), Vertebral (Ver), Haberman’s sur-
vival (Hab), Blood transfusion (B10), Seeds (See) and Abalone (Aba). All attributes
are scaled to a [0; 1]-range. We evaluate the performance over the first 40 active label
acquisitions and provide the results as learning curves for the optimised performance
measure accuracy for all data sets and algorithms.

4.2 Evaluation Results

In accordance to [2] and [15], we provide learning curves in the subfigures of Figure
6. These curves depict the progress in the active classifier’s accuracy as 40 training
instances are selected one after another for training. This allows to evaluate the perfor-
mance based on several criteria, and is more informative than tables of the performance
at arbitrarily selected learning stages.

(1) When does a curve become flat, i.e. when does the learner converge? On subfigure
g) for data set Seeds, the curves become flat already after reading 10 labels, while the
curves for data set Checkboard 2 (b) do not converge. Convergence indicates that addi-
tional labels do not provide additional use to the classifier, ideally a classifier converges

Dataset Inst Attr Pr(+) |Train| |Test| o Dataset PAL Chap Uncer Rand
See 210 7 33% 160 50 0.1 See 050 093 0.03 0.01
Che 308 2 44 % 200 108 0.08 Che 061 1.16 0.03 0.01
Che2 392 2 49% 250 142 0.08 Che2 092 154 0.03 0.02
Hab 306 3 73% 256 50 0.1 Hab  0.89 1.72 0.03 0.02
Ver 310 6 32% 260 50 0.1 ver 091 1.84 0.04 0.02
Aba 41778 50% 400 1177 0.06 Aba 1.51 3.82 0.07 0.04
Blo 748 4 24% 600 148 0.1 Blo 234 6.14 0.1 0.05
Mam 830 11 51% 630 200 0.1 Mam  2.56 848 0.25 0.12
Fig. 4. Dataset characteristics and parame- Fig. 5. Average execution time
ters (number of instances, number of at- (in seconds), ordering of rows is
tributes, proportion of positive instances, in ascending training dataset size.

training set size, test set size, bandwidth for
Parzen window classifier)



fast and to a high level of performance. This is seen on subfigures a and c, where PAL
in contrast to Random Sampling quickly converges to a high performance level.

(2) At what accuracy does a learner stop improving? Clearly, a learner that achieves
a 99% accuracy after reading 10 labels is better than one that needs 40 labels to reach
the same accuracy value, and also better than one that converges at 75%. Hence, PAL
outperforms all other algorithms except on Blood (f), Seeds (g) Abalone (h). The mo-
ment of convergence gives also indication on the appropriateness of the data set for
active learning. If we contrast subfigures b and g, we must assert that data set Seeds is
not truly interesting in terms of active learning: after reading the labels of 5 or at most
10 instances, all learners converge to an accuracy very close to 1. Thus, comparative
performance of the active learners on Seeds is not truly informative; this data set is
not very appropriate for experiments on active learning (except as a counterexample).
The curves on the Blood Transfusion data set (cf. subfigure f) also indicate that active
learning is not truly beneficial on this data set.

Fig. 6. a-h: accuracy curves for the algorithms on each dataset; early convergence to very high
values is best; improvement after a performance drop is better than a flat curve on low accuracy
values; j: runtime of PAL on a synthetic data set of varying size (100—1200 candidate instances).

a) Checkerboard b) Checkerboard 2 ) Mammographic mass

accuracy
)

3
accuracy
o
o
T
accuracy

0s PAL —— 0s PAL —— PAL ——
- Chapelle | 5 13 Chapelle 05 Chapelle |
Uncertainty Uncertainty Uncertainty
Random —w— f(andom ——— ’Randcm ———
0.4 L L onePm g 0.45 T N N P T 0.45 T R N P T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
requested labels requested labels requested labels
d) Vertebral €) Habermans survival f) Blood transfusion
R e e e e 0TS T T T 1 08 T T T T
07 <
065 i
3 2 06} 4 3
e e e
3 3 3
3 3055 - 7 RosH 4
0.5 H 05 1
PAL —— PAL —— 0.4 PAL ——
0.5 | Chapelle | 0.45} Chapelle | Chapelle
- Uncertainty Uncertainty Uncertainty
Random —x— Random —«— Random —«—
04 Loy (OO 0.4 L P 0.3 [ R B N sl kil
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
requested labels requested labels requested labels
9) Seeds h) Abalone j) Runtime vs. Synthetic Data Set Size
07 10

PAL‘_
Chapelle
8 Uncertainty

linear
extrapolation
6L

accuracy

o

accuracy

IS
T
I

execution time in seconds

0.5 PAL ——~ 2 B
Chapelle Chapelle
Uncertainty Uncertainty
osl 1 1 fenem 0.45 Loy fendpmg 0 f I I A
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 200 400 600 800 1000 1200

requested labels requested labels training set size



(3) Does a learner recover from previous errors? If a curve becomes flat early, then
the learner might be trapped in low accuracy values. This is the case for the algorithm
Chapelle on data set Mammographic Mass (c). In contrast, PAL recovers on this data
set, as well as on data sets Checkboard, Vertebral and Habermans Survival (a, d, e).
Random Sampling never recovers from earlier choices: its performance curves are ei-
ther flat or go upwards, indicating that an early poor choice cannot be amended. Uncer-
tainty Sampling recovers in some data sets, while Chapelle and PAL always manages
to recover if they err in their early choices of label. Summarising the results on accu-
racy progress, PAL exhibits high performance in all data sets, manages to recover from
poor choices and makes best use of available labels, as long as needed (i.e. longer for
Checkboard 2 than for Seeds). PAL reaches the best accuracy values on 5 of the data
sets, achieves comparable accuracy to the other learners on two data sets (Seeds and
Blood Transfusion). PAL is only outperformed once on the Abalone data set.

(4) Execution time The execution time of PAL is shown in Table 5 and plot j of figure 6.
Table 5 indicates the execution times of all active learning algorithms on each dataset.
We see that PAL achieves better accuracy curves with lower (up to 1/2.5 times) exe-
cution time than the error-reduction algorithm of Chapelle. Nevertheless, the execution
time is still significantly higher than that of uncertainty sampling, but like the former its
time increases solely linearly with the training set size, i.e. the number of labelling can-
didates. This is also shown in plot j) of Figure 6, where the execution times on various
training set sizes of the same synthetic dataset are plotted. Overall, the uniformly low
execution time of uncertainty sampling is accompanied by a stronger variance among
the accuracy curves (cf. Figure 6): while PAL has very high performance on all data
sets, escapes from earlier errors and exploits well all labels (whenever reasonable, see
counterexample on Subfigure 6g), the accuracy curves of Uncertainty Sampling and
Random Sampling vary in dependence on the data set. Thus, PAL exhibits stable per-
formance at lower execution time than the expensive error-reduction mechanism, while
the simpler algorithms are affected stronger by the idiosyncrasies of the data sets.

5 Conclusion

In this paper, we introduced the probabilistic active learning approach (PAL). It uses
probabilistic estimates (label statistics) calculated within the neighbourhood of a la-
belling candidate. In contrast to Monte-Carlo-based error reduction approach proposed
in [13], it models both the true posterior and the candidate’s label as random variables.
Given a user-specified performance measure, PAL computes the probabilistic gain, that
is the expected performance gain over both random variables by numeric integration.
It subsequently selects the candidate with highest density-weighted probabilistic gain.
Like uncertainty sampling [11], PAL requires asymptotically linear time with respect to
the pool size, in contrast to quadratic time required by error reduction in [13].

Thus PAL combines two previously incompatible qualities: being fast, and comput-
ing and optimising directly a point-performance measure. Given such a user-specified
performance measure and the label statistics as input, no additional parameters are re-
quired. Our experimental evaluation shows that PAL yields comparable or better classi-



fication performance than error-reduction, uncertainty-sampling or random active learn-
ing strategies, while requiring less computational time than error-reduction.

Future work will comprise deriving specific closed-form solutions for some point-
performance measures such as misclassification loss, as this promises further improve-
ments in speed. Further research is also needed to address non-myopic scenarios, where
optimising the resulting performance gain from acquiring several labels is required. Fi-
nally, as PAL is fast and requires only label statistics but no samples to be kept, its
application in data streams seems a promising direction for future research.
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