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• PhD (1998) on data mining 

• Chair of the MIDAS (Data 

Mining and Simulation) 

research group at UPM 

• Joined CTB 3 years ago 

• Emphasis on text and 

image  processing from 

EHR 
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Hospitals from Madrid 
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Motivation 

• In 2012, worldwide digital healthcare data was estimated to 

be equal to 500 petabytes and is expected to reach 25,000 

petabytes in 2020 

• Can we learn from the past to become better in the future? 

• Healthcare Data is becoming more complex !! 

• The problem : 

• Milllions of reports, tasks, incidents, events, images, … 

• Complete availability 

• Lack of protocols and structure 

• Organization oriented processes 

• Need of patient oriented processes  information 

 

5 



From Mckensey: big data in health report 

2013 
• From physicians judgment to evidence-based medicine 

• Standard medical practice is moving from relatively ad-

hoc and subjective decision making to evidence-based 

healthcare 

• Is the health-care industry prepared to capture big data’s 

full potential, or are there roadblocks that will hamper its 

use? 

• Holistic, patient-centered approach to value, one that 

focuses equally on health-care spending and treatment 

outcomes.  

 

6 



ELECTRONIC HEALTH 

RECORDS (EHR) 

Pedro Pereira Rodrigues, Myra Spiliopoulou, Ernestina Menasalvas 

"Medical Mining" Tutorial 15/09/2014 
7 



http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture_EMR_Markets_Whitepaper_vfinal.pdf 

EHR adoption 
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EHR adoption 
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EHR Knowledge Extraction 

• Electronic Health Records’ use has been increasing in the 

last ten years. 

 

• Digitalization of patients’ histories have led to enormous 

data stores. 

 

• Most hospitals do not take advantage of analytic 

processes to improve patient care. 
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The average hospital (300 beds) 

• 500.000 patients (reference population) 

• 1300 users (250 physicians, 900  nurses and technicsian, 

150 administrative tasks) 

• Monthly activity: 

• 20.000 consultations, 1300 admissions, 800 interventions 10.000 

emergencies 

• 75.000 annotations 

• 25.000 reports 

• 90.000 interdepartamental orders 

• 450.000 lab results (analytical) 

• 13.000 images analysis 

• 24.000 pharmacological prescriptions 
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Hospital Management  

• They require of solutions for  

• cost-reduction policies.  

• efficiency procedures. 

• establishing share-risk policies  

• Alarms 

• Early prognosis and diagnosis 

• Environmental, sensor, … integration 

• Use data and services of the cloud for comparison of data of other 

hospitals/countries/.. for efficiency policies.  

• .. 
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Goverment 

• support for cost-reduction policies 

• analysis of early detection of chronic diseases 

• analysis of diseases and the elderly 

• prediction of the evolution of diseases depending on clinical and 
societal factors 

• …. 

• sentiment analysis (user satisfaction) of policies, health care, 
… 

• impact of environmental factors on the evolution, prevalence 
and .. of diseases 

• impact of socio economic situation of people on the disease 
evolution and impact on health costs 

• cloud based services for analysis of all the data generated in 
different hospitals  
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Clinicians:  evidence based medicine 

• correlations, associations of symptoms, familiar antecedents, 

habits,  diseases  

• impact of certain biomedical factors (genome structure, clinical 

variables ) on the evolution of certain diseases 

• automatic classification of images (prioritization of RX images to 

help diagnosis)  

• automatic annotation of images 

• natural language (google style) based diagnose aid tools 
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Researchers 

• find early indicators of diseases  

• design of clinical trials  

• automatic search in bibliography using not only keywords but also 

analyzing the text of the papers 

• use of analytics services available on the web 

• Use data and services of the cloud for in order to obtain knowledge 

from of other hospitals/countries/...  
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Goal 

Provide right intervention to the right patient at the right time 

ACQUIRE,  

PROCESS, 

ANALYZE 

UNDERSTAND 
 

 

PREDICT 
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Goal 

• Prediction will enable 

• Personalized care to the patient. 

• Early diagnose 

• Lower cost 

• Improved outcomes 

• … 
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Traditionally 
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Automated 
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Integrate, 

annotate,. 

Analytics 

Pattern 

Extraction 
Evaluation 

Decission 

Support 



Process 
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Data 
Acquisition 

Data processing 

Modelling 

Validation 

Apply 

Process 

22 



1st step: Data acquisition 

• EHR: 

• Structured data: 

 Lab tests (LOINCR) 

• Many lab systems still use local dictionaries to encode labs 

• Diverse numeric scales on different labs 

• Missing data 

 Clinical and demographic data (ICD): ICD stands for International 
Classification of Diseases 

• ICD is a hierarchical terminology of diseases, signs, symptoms, and procedure 
codes maintained by the World Health Organization(WHO) 

• Pros: Universally available 

• Cons: medium recall and medium precision for characterizing patients 

 

• Non-structured data: 

Images 

Clinical notes 
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2nd step: analysis of the data 

• Image annotation 

• Natural language processing 

• Integration  
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Standards 

• MeSH (Medical Subject Headings) - A thesaurus for indexing 

articles for PubMed. 

• UMLS (Unified Medical Language System) - Integrates key 

terminology among different coding standards. 

• SNOMED CT - Standard for clinical terminology. 

• DICOM (Digital Imaging and Communications in Medicine) -

Standard for processing medical images. 

• GS1 standards - Used to identify uniquely different medical 

products. 

• LOINC (Logical Observation Identifiers Names and Codes) -

Standard for identifying laboratory and clinical observations. 

• RxNORM - Standard normalizing names for pharmacy & drugs 

products. 
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Other resources 

• SEDOM provides on its webpage an abbreviations 

dictionary with 4368 Spanish acronyms. 

• Medilexicon (http://www.medilexicon.com) - provides 

more than 200,000 acronyms. 

• OBO Foundry (http://www.obofoundry.org) - provides 

several biological and biomedical ontologies. 

• As well as BFO (http://www.ifomis.org/bfo) - which 

provides basic ontologies. 

• CIMI 

(http://informatics.mayo.edu/CIMI/index.php/Main_Page) 

From Mayo clinic provides a Modeling initiative. 
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 http://medcitynews.com/2013/03/the-body-in-bytes-

medical-images-as-a-source-of-healthcare-big-data-

infographic/ 

 

• By 2015, the average hospital will 

have two-thirds of a petabyte of 

patient data, 80% of which will be 

unstructured  image data like CT 

scans and X-rays. 
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Most frequent 

• ComputedTomography (CT), X-Ray, Positron 

Emission Tomography (PET) 

• The main challenge with the image data is that it is not 

only huge, but is also high-dimensional and complex. 

• Extraction of the important and relevant features is a 

daunting task. 
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PET/CT 

• Positron Emission Tomography (PET) and Helical CT 

• PET detects area of increased metabolic activity as indicated 
by uptake of radioactive glucose (tumor, infection) 

• PET data is usually “fused” with CT data to produce an image 
showing increased glucose uptake superimposed upon the 
exquisite anatomic detail of helical CT  

• Some example of cancers evaluated with PET: 

• Lung 

• Lymphoma 

• Melanoma 

• Colorectal 

• Breast 

• Esophagus 

• Head and Neck 

 

 



Technical Challenges 

• Imaging Physics - better images by 

• Detector design 
 Spatial resolution 

 Sensitivity 

• Radiochemistry - better tracers (PET imaging) 

 

• Image processing 
 Corrections for physical effects 

 Multimodal image fusion 

 Image reconstruction algorithms 

• Data Analysis  better interpretation of images 

 



Lung carcinoma  

CT PET 

Fused image 



Breast carcinoma 

CT 

Fused image PET 



Metadata Structure 

128 bytes 

4 bytes (four characters: ”DICM”) 

Tag 
4 bytes 

VR 
2/4 bytes 

ValueLength (VL) 
2/4 bytes 

Value Field (VF) 

defined by VL 

Data Set Element 

optional field - dependent on 
negotiated Transfer Syntax 

Data Element Tag: 4 bytes, hexadecimal, group (2 bytes), 
elements(2 bytes) 

Value Represention (VR): optional, 2 or 4 bytes, character, 
depends on transfer syntax 

Value Length (VL): 2or 4 bytes, long integer, defines value 
field length, dependent on VR 

Value Field (VF): length is defined by VL, format is defined 
explicitly by VR or implicitly 
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Methodology for image processing 

• Overall process of image mining 

Data 
Preprocessing 

Extracting 
multi-

dimensional 
feature vectors 

Mining of 
vectors and 
acquire high 

level 
knowledge 
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Methodology for image processing 

1. Data pre-process 

• Calibration: (depending on the device registering the image) 

• Clean up the noise. (noisy pixels)  

• Registration (check the stack of images) 

2. Extracting multi-dimensional feature vectors 

• Segmentation Algorithm. Search for homogenous voxels 

• Super-Voxels have to be characterized  using low-level features 

selection 

 Spectral digital levels 

 Shape compactness,.. 

 Textural smooth, … 

 Context neighborhood supervoxels  

 Spatial relationship  up/down,left/right 
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Methodology for image processing 

3. Mining of vectors and acquire high level knowledge 

– Image annotation 

– Indexing and retrieval 
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Methodology: Image annotation 

Image annotation 

• Classical approach  manual annotation. It is impractical to 

annotate a huge amount of images manually 

• Second approach  content based image retrieval (CBIR), where 

images are automatically indexed and retrieved with low level 

content features like color, shape and texture  

• Third approach of image retrieval is the automatic image 

annotation 
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Methodology: Image annotation 

Automatic image annotation 

• Single labelling annotation using conventional classification 

methods: methods (support vector machines (SVM), Artificial Neural 

Networks, Decision Tree) 

• There three types of AIA approaches: 

• Single labelling annotation using conventional classification methods 

(support vector machines (SVM), artificial neural network (ANN), and 

decision tree (DT)) 

• Multi-labelling annotation  annotates an image with multiple concepts 

using the Bayesian methods 
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Methodology: Image annotation 

Automatic image annotation 

• Single labelling annotation using conventional classification 

methods: methods (support vector machines (SVM), Artificial 

Neural Networks, Decision Tree) 

• Binary classification  Tumor / non-tumor cell 
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Methodology: Image annotation 

Automatic image annotation 

• Multi-labelling annotation  annotates an image with multiple 

semantic concepts/categories  using the Bayesian methods 

• Concept of multi-instance multi-label (MIML) represents an image 

with a bag of features or a bag of regions. The image is annotated 

with a concept label if any of the regions/instances in the bag is 

associated with the label. Then the image is annotated with multiple 

labels 
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Methodology: Image annotation 

Multi-labelling annotation 

• Given a set of images                from a set of given semantic 

classes                       . 

Bayesian models try to determine the posterior probability from the 

priors and conditional probabilities 

• Model of conditional approaches 

– Non-parametric 

– Parametric 
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Methodology: Image annotation 

Model of conditional approaches 

• Non-parametric. No prior assumption about the distribution of the 

image features is considered. The actual feature distribution is 

learned from the features of the training samples using certain 

statistics. 
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Automated image annotation: non-
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Source: D. Zhang, M. M. Islam, and G. Lu, “A review on automatic image annotation 
techniques,” Pattern Recognition, vol. 45, no. 1, pp. 346–362, Jan. 2012. 

Fig. General Bayesian annotation model 



Methodology: Image annotation 

Model of conditional approaches 

• Parametric. The feature space is assumed to follow a certain type 

of known continuous distribution. Therefore, the conditional 

probability is modelled using this feature distribution and it is 

usually modelled as a multivariate Gaussian distribution. 
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Methodology: Image annotation 
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Methodology: Indexing and retrieval 

Indexing and retrieval 

• Two different frameworks 

 Text-based 

 Content-based 

• Researh areas 

• Low-level image feature extraction 

• Similarity measurement 

• Deriving high level sematic features 
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Methodology: Indexing and retrieval 

• Levels of queries in CBIR: 

 Level 1: retrieval by primitive features (color, texture, spatial 

location,…).- Eg.: “find pictures like this” 

 Level 2: retrieval of objects of given type identified by derived features, 

with some degree of logical inference.- Eg.:”find a picture of a flower” 

 Level 3: retrieval by abstract attributes (emotional, religious,.., 

significance). Eg.: “find pictures of a joyful crowd” 
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Methodology: Indexing and retrieval 

• Most current systems perform retrieval at level 2 

 Low-level image feature extraction (global/regions)  

segmentation+characterization 

 Similarity measure 

• Distances between regions   

• Distance at image level 

• One-one match: each region in the query image is only allowed to match one region in 

the target image 

• Many-many match: each region in the query image is allowed to match more than one 

region in the target image 

• Semantic gap reduction 
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Methodology: Indexing and retrieval 

• Narrowing down the “semantic gap” techniques 

 Object ontology to define high-level concepts 

 Machine learning to associate low-level features with query concepts 

 Relevance feedback to learn users’ intention 

 Generating semantic template to support high-level image retrieval 
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Methodology: Indexing and retrieval 
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Source: Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey of content-based image retrieval with high-level 
semantics,” Pattern Recognition, vol. 40, no. 1, pp. 262–282, Jan. 2007. 



Methodology: Indexing and retrieval 
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Source: Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey of content-based image retrieval with high-level 
semantics,” Pattern Recognition, vol. 40, no. 1, pp. 262–282, Jan. 2007. 

• Object ontology to define high-level concepts 



Methodology: Indexing and retrieval 

• Machine learning to associate low-level features with query 

concepts 

 Supervised learning  

 Unsupervised learning 

 Object recognition techniques 

 

 

 

 

 

 

 

 

 

 

57 



Methodology: Indexing and retrieval 

• Relevance feedback to learn users’intention 

 Typical scenario 

1. The system provides initial retrieval results through query-by-example, 

sketch, etc.  

2. User judges the above results as to whether and to what degree, they are 

relevant (positive examples)/irrelevant (negative examples) to the query.  

3. Machine learning algorithm is applied to learn the user’ feedback. Then go 

back to (2).  
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Methodology: Indexing and retrieval 

Relevance feedback 

to learn users’ 

intention 
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Source: Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey of content-based image retrieval with high-level 
semantics,” Pattern Recognition, vol. 40, no. 1, pp. 262–282, Jan. 2007. 



Methodology: Indexing and retrieval 

• Generating semantic template (ST) to support high-level image 

retrieval 

 ST is a map between high-level concept and low-level visual features 

 Different levels of user interaction 
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TEXT PROCESSING 
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Clinical notes and reports 

• Clinical notes contain rich and diverse source of information 

• Clinical documents are a valuable source of information for detection and 
characterization of outbreaks, decision support, recruiting patients for 
clinical trials, and translational research. 

• They contain information regarding signs, symptoms, treatments, and 
outcomes 

• Challenges for handling clinical notes 
• Ungrammatical, short phrases 

•  Abbreviations 

• Misspellings 

• Semi-structured information: 
 Copy-paste from other structure source 

  Lab results, vital signs 

• Structured template:  
• Summary 

• Antecedents (relatives and therapeutical) 

• Tests. 

• judgement 

• treatment 

62 



NLP applied to EHR 

• Analysis of free text input from clinical reports and 

patient’s history would improve healthcare. 

• There are several English-centric tools working towards 

that goal: 
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 Mayo’s 

cTAKES 

 MetaMap 

 MedLee 

 HiTex 

SNOMED-CT 

UMLS 

LOINC 
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Natural 
Language  

Processing 

Negation 
Detection 

Sentence 
Detector 

Tokenizer 
Part of 
Speech 

Chunker 
Name 
Entity  

Negation Hypothesis 
Historical 

Event 
Subject  

Recogntion 



NLP 
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NLP training 

• Annotated Corpus 

• OpenNLP requires to set the values for:  

1. number of  iterations: number of times the training procedure 

should iterate when to find the best the model's parameters; 

2. cut-off: number of times a feature must have been seen in 

order to be considered into the model. 

• Training models: 

• The validation of all the models is done on the basis of a 10-fold 

cross- validation with 80/20 split  

• precision, recall, accuracy, and F-Measure for trained models 
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Negation 

• Patient’s medical records contain valuable clinical 

information. 

• An important feature of the clinical narrative text is that it 

commonly encloses negation concepts. 

• According to Chapman et al. [1], around half of all clinical 

conditions in narrative reports are negated. 
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NegEx 

• Triggers: 

 definiteExistence,  

 definiteNegatedExistence,  

 historical 

• Scope 

• Direction 
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Context analysis-Negation 

• Negation: e.g., ...denies chest pain… 
• NegExpander [1] achieves 93% precision on mammographic 

reports 

• NegEx [2] uses regular expression and achieves 94.5% specificit 
and 77.8% sensitivity 

• NegFinder [3] uses UMLS and regular expression, and achieves 
97.7 specificity and 95.3% sensitivity when analyzing surgical notes 
and discharge summaries 

•  A hybrid approach [4] uses regular expression and grammatical 
parsing and achieves 92.6% sensitivity and 99.8% specificity 

 
1. Aronow DB, Fangfang F, Croft WB. Ad hoc classification of radiology reports. JAMIA 1999:393-411 

2. Chapman et al. A simple algorithm for identifying negated findings and diseases in discharge summaries. 
JBI 2001:301-10. 

3. Mutalik PG, et al. Use of general-purpose negation detection to augment concept indexing of medical 
documents: a quantitative study using the UMLS. JAMIA 2001:598-609. 

4. Huang Y, Lowe HJ. A novel hybrid approach to automated negation detection in clinical radiology reports. 
JAMIA 2007 
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ConText 

• ConText  [1]  an  extension of the NegEx that uses regular expressions 
to detect the negation  

• determining whether clinical conditions mentioned in clinical reports are: 
• negated: ruled out pneumonia 

• Hypothetical: Patient should return if she develops fever 

• Temporality: historical or recent past history of pneumonia  

• Contextual: experienced by someone other than the patient: family history of 
pneumonia 

• potential to substantially improve precision for information retrieval and 
extraction from clinical records. 

• query for patients with a diagnosis of pneumonia may return false 
positive records for which pneumoniais mentioned but is negated 
experienced by a family member or occurred in the past . 

 

 
[1] Henk Harkema, John N. Dowling, Tyler Thornblade, Wendy W. Chapman, ConText: An algorithm for determining 
negation,experiencer, and temporal status from clinical reports, Journal of Biomedical Informatics, Volume 42, Issue 5, 
October 2009, Pages 

839-851, ISSN 1532-0464,  
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ConText 
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ConText: Generating regular expressions 

ConText is based on two types of terms triggers: 

• The terms: terms indicating the clinical concept status: 

 denied or affirmed,  

 recent or historical  

 experienced by the patient or otherwise 

• in the scope of the term trigger. 

• pseudo-trigger terms: Triggers terms resemble but do not work as 

such terms 

• two types of terms depending on their position regarding 

the concept analyzed terms: 

• Preconcept  triggers and triggers postconcept terms. 
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ContEx 
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Extends NegEx: 

• uses regular expressions to 

identify the scope of trigger terms 

that are indicative of negation 

such as ‘‘no” and ‘‘ruled out.” Any 

clinical conditions within the 

scope of a trigger term are 

marked as negated 

• employs a different definition for 

the scope of trigger terms 

• ConText identifies three 

contextual values in addition to 

NegEx’s negation: hypothetical, 

historical, and experiencer 

Negative 

expression 

Negative 

expression 

Regular expression 

generation 

Break sentences 

Identify trigger term 

Scope of a term 

Update affected 

terms 



ConText: Generating regular expressions 

ConText is based on two types of terms triggers: 

• The terms: terms indicating the clinical concept status: 

 denied or affirmed,  

 recent or historical  

 experienced by the patient or otherwise 

•  in the scope of the term trigger. 

• pseudo-trigger terms: Triggers terms resemble but do not work as 

such terms 

• two types of terms depending on their position regarding 

the concept analyzed terms: 

• Preconcept  triggers and triggers postconcept terms. 
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ConText: triggers 

• Identify all trigger terms: 

• ‘‘no” and ‘‘denies,”  

• for hypothetical, ‘‘if” and ‘‘should,”  

• for historical, ‘‘history” and ‘‘status post,”  

• and for other, ‘‘family history” and ‘‘mother’s.”  

• The total number of trigger terms used by the current version of 

ConText is: 143 for negated, 10 for historical, 11 for hypothetical, 

and 26 for other 
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ConText: pseudo-triggers 

• pseudo-triggers  

• terms that contain trigger terms but do not act as contextual 

property triggers 

• To avoid false positives, ‘‘History exam” is includedin the list of 

pseudo-triggers for historical.  

• In the current version of ConText there are 17 pseudo-triggers for 

negated (e.g., ‘‘no increase,” ‘‘not cause”), 17 pseudo-triggers for 

historical (e.g., ‘‘social history,” ‘‘poor history”), four pseudo-triggers 

for hypothetical (e.g., ‘‘if negative,” ‘‘know if”), and 18 pseudo-

triggers for other (e.g., ‘‘by her husband,” ‘‘by his brother”) 
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Algorithm 

• Mark up all trigger terms, pseudo-trigger terms, and 

termination terms in the sentence. 

• Iterate through the trigger terms in the sentence from left 

to right: 

• If the trigger term is a pseudo-trigger term, skip to the next trigger 

term. 

• Otherwise, determine the scope of the trigger term and assign the 

appropriate contextual property value to all indexed clinical 

conditions within the scope of the trigger term. 
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ConText: triggers 

• Identify all trigger terms: 
• ‘‘no” and ‘‘denies,”  

• for hypothetical, ‘‘if” and ‘‘should,”  

• for historical, ‘‘history” and ‘‘status post,”  

• and for other, ‘‘family history” and ‘‘mother’s.”  

• The total number of trigger terms used by the current version of 
ConText is: 143 for negated, 10 for historical, 11 for hypothetical, and 
26 for other 

• pseudo-triggers  
• terms that contain trigger terms but do not act as contextual property 

triggers 

• To avoid false positives, ‘‘History exam” is included in the list of 
pseudo-triggers for historical.  

• In the current version of ConText there are 17 pseudo-triggers for 
negated (e.g., ‘‘no increase,” ‘‘not cause”), 17 pseudo-triggers for 
historical (e.g., ‘‘social history,” ‘‘poor history”), four pseudo-triggers for 
hypothetical (e.g., ‘‘if negative,” ‘‘know if”), and 18 pseudo-triggers for 
other (e.g., ‘‘by her husband,” ‘‘by his brother”) 
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Querying indexed data 

Basic interface functionality 

filtering search results and 

reporting of history. 

 

Limitations: 

Partial data available. 

No definition of terms apply. 

Limitations syntactic and 

semantic indexing terms. 
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Insert query term 
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Simple results 
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Make information easy accesible 
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Filtering 

Interactive filtering data: 

Initially on history data. 

It is possible to extend it to the income data and 

diagnostics. 

 

You can include aggregate information on selected 

items / removed, to help filter run: 

Diagnostic statistics. 

Visual presentation of histograms. 
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Tags cloud 
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Conclusions 

• EHR analysis and evidence-based decisions in hospitals 

need the adoption of this technologies. 

• Efforts in adopting NLP techniques in Biomedicine should 

be done. 

• Image annotation techniques are required 

• Integration of image annotation and text processing 
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Conclusions 

• Improvement of NLP process 

• Improvement of negation detection algorithms to include 

more contextual information. 

• Generation of new algorithms applied to clinical conditions 

and their relationships. 

• Application of data mining techniques to extract 

knowledge from the system. 
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Conclusions 

• Health domain is generating huge of complex data 

• Integrated methods (hw and sw ) are required 

• Mining clinical notes and Automatic Image annotation 

(AIA) very challenging research area. There are several 

major issues:  
1.- High dimensional feature analysis. 

2.- How to build an effective annotation model? 

3.- How to rank images/texts within each of the categories?  

4.- Lack of standard vocabulary and taxonomy for annotation.  
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