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Abstract

What characterizes an influential user? While there is much research on finding the concrete influential
members of a social network, there are less findings about the properties distinguishing between an influ-
ential and a non-influential user. A major challenge is the absence of a ground truth, on which supervised
learning can be performed. In this study, we propose a complete framework for supervised separation be-
tween influential and non-influential users in a social network. The first component of our framework, the
InfluenceLearner, extracts a Relation Graph and an Interaction Graph from a social network, computes
network properties from them and then uses them for supervised learning. The second component of our
framework, the SNAnnotator, serves for the establishment of a ground truth through manual annotation of
tweets and users: it contains a crawling mechanism that produces a batch of tweets to be annotated offline,
as well as an interactive interface that the annotators can use to acquire additional information about the
users and the tweets. On this basis, we have created a ground truth dataset of Twitter users, upon which
we study which properties characterize the influential ones. Our findings show that there are predictive
properties associated with the activity level of users and their involvement in communities, but also that
writing influential tweets is not a prerequisite for being an influential user.

Keywords: Identification of Influential Users, Properties of Influential Users, Learning of Influence,
Community Mining, Influential Users in Twitter, Influential Users, Influential Tweets, Annotation of
Tweets, Mining, Twitter

1. Introduction

The propagation of influence in online social net-
works has been subject of extensive research, ever
since the seminal works of (Domingos & Richard-
son, 2001; Kempe et al., 2003) on influence propa-
gation in social graphs. Whilst there is a substan-
tial amount of work in identifying influential so-
cial graph participants (also known as influentials),
there are less findings on identifying the proper-
ties which distinguish between influential and non-
influential nodes. In this study, we investigate to
what extend supervised analysis of a social graph
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can reveal distinctive properties of influential users.
We propose a framework that extracts user at-
tributes that have the potential of predicting a
user’s influence power, and we use this framework
to separate between influential and non-influential
Twitter users.

Modeling the spread of influence in social net-
works is an intensively studied task. Contribu-
tions include diffusion models that describe influ-
ence propagation, and theoretical findings on how
well such a diffusion model can describe reality
(Kempe et al., 2003). A major application area
for such models is viral marketing, because, as
pointed out by Barbieri et al. (Barbieri et al.,
2013): ”. . . individuals tend to adopt the behavior
of their social peers”. They continue with the im-
portant statement that ”cascades happen first lo-
cally, within close-knit communities, and become
global ”viral” phenomena only when they are able
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cross the boundaries of these densely connected
clusters of people.” (Barbieri et al., 2013). These
studies focus on modelling the spread of influence
and on finding the persons that have the most in-
fluence. But what are the properties characterizing
these persons? Are there attributes on the activities
and writings of a user that indicate her influence?

In this study, we express the problem of identify-
ing influential users as a classification task, and aim
to identify the characteristics of such users. Labeled
datasets for this task are rare (Bigonha et al., 2012).
Moreover, the authors of (Bigonha et al., 2012) are
not allowed to give access to the tweet contents due
to the terms of service of Twitter. To verify the as-
sumption that tweet content can indicate whether
a tweet author is influential, we propose as part of
our framework a workflow for the offline creation of
a labeled set of tweets and of users who wrote these
tweets. We use this workflow to create a labeled
dataset that we use for our experiments.

The contribution of our work is then twofold: we
propose a supervised learning method and a set
of properties for distinguishing between influential
and non-influential social graph members, and we
also propose a workflow for acquiring labeled data
for supervised learning. We study Twitter in our
work, because Twitter is a representative of the
who listens to whom attitude suggested in (Bakshy
et al., 2011). However, the workflow we propose
allows for building datasets on any social platform
to learn a dedicated model on it. As a further by-
result of our approach, we make the dataset of our
first run of our framework available to other schol-
ars (see section 4 on data access).

The remainder of this paper is structured as fol-
lows: in section 2 we discuss related work for de-
tecting influentials in Twitter. In section 3, we
introduce our framework and present its learning
component that extracts attributes from the social
graph to characterize the users of postings, as well
as the annotation component for acquiring a labeled
dataset. We report on our experiments in section
4. The last section concludes our study.

2. Related Work

There exist various heuristics - based on men-
tions, replies, followers and followees - that rank
users according to their influence (Anger & Kittl,
2011; King et al., 2013; Sun & Ng, 2013; Razis &
Anagnostopoulos, 2014). Other heuristics focus on
aspects like tweet quality (Kong & Feng, 2011) or

utilize alpha centrality which is related to Eigen-
vector centrality (Overbey et al., 2013). Zhao et
al. devise a new measure for influence based on
sentiment (Zhao et al., 2014). Sun et al. pursue a
more sophisticated approach by building a user and
tweet graph to identify influential users (Sun & Ng,
2013). King et al. (King et al., 2013) devise the
t-index that denotes the number of times a user’s
unique tweet has been retweeted to compare the in-
fluences users exert on the same topic. Razis et al.
(Razis & Anagnostopoulos, 2014) combine the ra-
tio of a user’s followers and followees and the ratio
of tweets written in a certain period of time into
an influence metric. Similarly, Bigonha et al. com-
bine users’ sentiment, tweet quality and centrality
to obtain an aggregated influence score (Bigonha
et al., 2012). In terms of supervised learning, Chai
et al. follow a similar approach, but combine at-
tributes related to four categories - activity, cen-
trality, quality and reputation (Chai et al., 2013).
Liu et al. extract several attributes known from lit-
erature to train an SVM (Liu et al., 2014) and Xiao
et al. use attributes related to three different cate-
gories in order to find influential users (Xiao et al.,
2013). The problem with these approaches is that
there is no ground truth on what people consider
as influential user to evaluate the approaches on.
We address this aspect in our work by building a
ground truth on people’s perception of influence.

There are also commercial services (including
Klout 2, PeerIndex3, Kred 4) that assign influence
scores to users. However, each such service uses its
own, internal/proprietary definition of the term in-
fluence. Campo-Ávila et al. (Campo-Ávila et al.,
2013) attempt to reverse engineer two of these algo-
rithms (Klout and PeerIndex) and to identify the
factors used in these internal definitions of influ-
ence. Our intention in this work is not to provide
yet another definition of influence (which might be
subject of some controversy), but to identify factors
that are associated with influence, when human an-
notators decide who is influential and who is not,
keeping in mind that humans, in contrast to ser-
vices, do not have a rigid definition of whom they
consider influential.

In a different thread of research, Barbieri et al.
study the spread of information in a social net-
work, and point out that cascades are local phe-

2www.klout.com (10-30-2014)
3www.peerindex.com (10-30-2014)
4www.kred.com (10-30-2014)
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nomena (Barbieri et al., 2013) that manifest them-
selves inside close-knit communities; only some of
them cross the community borders through nodes
that are part of both communities. Wang et al. also
assume that influentials need to occur in every com-
munity to propagate information across the net-
work (Wang et al., 2010). Inspired by these findings
on the role of communities for information propa-
gation, we also take the community structure of the
graph into account. However, in contrast to (Wang
et al., 2010; Barbieri et al., 2013), our objective is
to find the characteristics of influential users and
not to point to those users who are influential.

Summarizing, our work differs from other litera-
ture on influence in following aspects. Differently
from (Bigonha et al., 2012; Anger & Kittl, 2011;
King et al., 2013; Sun & Ng, 2013; Razis & Anag-
nostopoulos, 2014; Kong & Feng, 2011; Overbey
et al., 2013; Zhao et al., 2014) and similarly to
(Quercia et al., 2011), we do not attempt to find
influential users but rather identify the character-
istics that separate between influential and non-
influential users. To this purpose, we derive prop-
erties that reflect social activity, and use them in
supervised learning. The learner and the set of
properties constitute our first contribution. This
set of properties is larger and more elaborate than
in (Bigonha et al., 2012; Chai et al., 2013; Liu et al.,
2014; Xiao et al., 2013) and, moreover, it is ac-
companied by an elaborate approach on assessing
the ground truth. Indeed, unlike Klout, PeerIndex,
Kred and (Bigonha et al., 2012; Cha et al., 2010),
we do not provide yet another definition of influ-
ence, nor try to reengineer existing definitions, but
we rather cover the non-crisp, subjective percep-
tion of influence that people have. To this pur-
pose, our approach encompasses a mechanism for
the creation of a ground-truth dataset (a seed) of
influential and non-influential users through human
annotators. This mechanism is our second contri-
bution.

3. Framework

Our framework for identifying characteristics of
influentials has two components: the SNAnnotator
and the InfluenceLearner. The former collects data
from Twitter to establish a ground truth, which
serves as input for the InfluenceLearner. The lat-
ter is responsible for turning a dataset into graphs,
extracting attributes and learning a meaningful
model.

3.1. SNAnnotator

Our SNAnnotator describes the process of col-
lecting a dataset regarding a specific topic in batch
mode, manually labeling and preparing it for at-
tribute extraction with our InfluenceLearner.

3.1.1. Offline Dataset Crawl

We collect tweets during a certain period of time
and retrieve their authors thereafter. SNAnnota-
tor can also operate on multiple topics simultane-
ously, because it uses hashtags to identify the tweets
corresponding to a topic. However, as Cha et al.
point out (Cha et al., 2010), a user’s influence may
vary over topics and change with time. Therefore,
we concentrate on learning influence towards sin-
gle topics. We collect tweets containing the set of
predefined hashtags using the Twitter Streaming
API5. This means only the latest tweets of users
related to the topic are collected. Once this process
is completed, the metadata of the respective users
are obtained through the Twitter Rest API6. Since
Twitter permits only a limited number of API calls
per hour, we decided to collect users afterwards in
one go. This helps to avoid potential side-effects.
For instance, if we collected multiple tweets of a
user, her metadata would have been different all
the times, at least in the number of posted tweets.
To avoid discrepancies, SNAnnotator contains an
interface, through which the human annotators can
inspect the activities of a user in Twitter also out-
side the time horizon of the crawl. This allows for
more informed decisions on whether a user is influ-
ential or not.

In terms of tweets, we only retrieve those written
in English to simplify the annotation process for
our human annotators. For this purpose, we collect
only tweets from users who have chosen the respec-
tive language in their Twitter front end, which is
detected based on the metadata. This filtering step
removes most of the unrelated users and tweets, but
not all of them. The remaining unrelated users and
tweets are removed during and after the Annotation
Process described hereafter.

3.1.2. Annotation Process

We propose two types of labels: we distinguish
between tweet and user labels and take into account

5https://dev.twitter.com/docs/streaming-apis (10-30-
2014)

6https://dev.twitter.com/docs/api/1.1 (10-30-2014)
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that both types have to be labeled independently
from each other. Hence, we develop an offline anno-
tation tool, with which n independent human anno-
tators assign to each tweet and user a label denoting
whether the user (resp. the tweet) is influential or
not. This tool also takes the independence of labels
into account by selecting the next user or tweet to
be presented to annotators in a random order.

The decision whether a user (or tweet) is influ-
ential is not binary: we rather define five classes
for users and tweets, namely ”influential”, ”prob-
ably influential”, ”probably non-influential”, ”non-
influential”, ”strange”. The reason for the first four
labels is that some users or tweets seem promising
but are not influential yet. The last class ”strange”
is to be used for tweets written in a language other
than English, and tweets that are incomprehensible
or are not available online anymore. Twitter users
may be classified as ”strange” only if their account
got suspended/deleted, or if most of their tweets
are incomprehensible or not written in English.

We do not provide human annotators with an ex-
plicit definition of influence as to when to assign a
tweet/user which of the labels. We refrained from
defining “influence” explicitly since we want to em-
ploy supervised learning to discover characteristic
properties of influentials. If we provided a defini-
tion, we could have extracted related attributes to
build a model yielding 100% accuracy. But this
process would not reflect human perception of in-
fluence. Thus, we allow human annotators to de-
cide about ”influence” for themselves. This proce-
dure introduces noise among the labels due to the
subjectivity of human annotators regarding ”influ-
ence”. We try to lessen this problem by combin-
ing two strategies: preparing the human annota-
tors with background information and by increas-
ing the number of annotators. Before the anno-
tation process begins, we would like to make sure
that all annotators have a basic idea of the pro-
cedure. Thus, we prepared an annotation proto-
col7, specifying background information about the
topic, responsibilities of the individual annotators
and suggestions/examples as to how they might de-
fine influence for themselves. In the second step, we
require each tweet and user to be labeled multiple
times, but every time by a different annotator. This
strategy helps to decrease the noise across labels
and also allows us to assume the representativeness

7contact the first author to obtain it

Figure 1: Additional metadata being stored during the an-
notation of a user and tweet.

of the labels assigned by the human annotators. Al-
though this assumption is difficult to verify, in case
of doubt the number of annotators can be increased
to get more reliable responses. Note that increas-
ing the number of annotators does not affect our
general methodology.

Before assigning the final labels, we remove all
tweets and users that were labeled “strange” at
least by one annotators. In the last step, we de-
termine the final labels with the help of the me-
dian, since the remaining four classes are repre-
sented internally as ordinal values. In the remain-
der of this study, we always refer to those classes,
since no more “strange” users and tweets exist in
the dataset.

While annotating an item, additional metadata
are recorded, which is depicted in Figure 1. The
total time ttotal starts when the human annotator
loads a tweet or a user’s entry into the SNAnnota-
tor; ttotal stops as soon as the annotator assigns a
label. Furthermore, we store how much time each
human annotator spends browsing a user’s profile
(tprofile/tweet) and for how long a linked URL is
visited (tURL). These data allow for learning the
labeling behavior of human annotators over time,
but are not utilized in this study.

3.1.3. Merging and Cleaning the Annotated Set

Our SNAnnotator determines the ground truth
for user and tweet labels by selecting the median
of the assigned labels by human annotators. Users
or tweets that were marked to be removed, are ex-
cluded from the dataset, since they could not be
labeled by all responsible human annotators a suf-
ficient number of times. All tweets which were writ-
ten by a deleted user are removed as well. Likewise,
users without any more valid tweets are discarded,
too. This resulting dataset serves as input for the
InfluenceLearner.
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3.2. InfluenceLearner

Our InfluenceLearner learns the characteristic at-
tributes of influential documents and users in a su-
pervised way. To this purpose, we process the orig-
inal social network and derive from it a set of at-
tributes for the users in the network. Each attribute
belongs to either (I) community structure which
is based on the detected communities, (II) activ-
ity which relates to how much users involve their
followers, (III) quality that considers the quality of
the tweets, and (IV) centrality which incorporates
the position of users in the graph. Then, we use the
graph data (including tweet labels but not user la-
bels) of the dataset prepared with SNAnnotator to
learn models on these data, and select the attributes
that contribute most to classifier quality. In the last
step, we validate those models on the manually la-
beled users from the dataset of the SNAnnotator
using two experiments. Since we want to discover
predictive attributes, we compare the performance
of the classifiers trained on subsets of all attributes
with the classifiers learned on the entire set of at-
tributes. Due to the nature of the labels of our
dataset, we also analyze whether posting influen-
tial tweets is a characteristic property of influential
users or not. The experimental setup is described
in detail in section 4.

The workflow of our InfluenceLearner is as fol-
lows. We first derive directed graphs from the orig-
inal social network reflected in the crawled data, the
graph of relations between users and the graph of
interactions between them; this step is described in
3.2.1, where we also define the concepts of Relation
Graph and Interaction Graph. Next, we transform
each of these two directed graphs into a line graph,
as explained in 3.2.2. We need these line graphs for
the construction of communities that may overlap.
We opt for the computation of overlapping commu-
nities instead of disjunct ones, because literature
(Barbieri et al., 2013) has shown that users tend
to participate in more than one community simul-
taneously. Community computation is described
in 3.2.3. From the graphs and communities we
derive a list of attributes, which we organise into
categories: these attributes will be used as dimen-
sion space for learning to separate between influen-
tial and non-influential users. The computation of
the attributes is described in 3.2.4. On Figure 2,
we show this sequence of steps for a tiny example
graph.

3.2.1. Building Relation and Interaction Graphs

Similarly to (Bigonha et al., 2012), we distinguish
between an Interaction Graph IG and a Relation
Graph RG.

Relation Graph. Given the set of users U in a social
network, and given that u1, u2 ∈ U , we draw an
edge (u1, u2) iff u1 is follower of u2: we use the
set of those edges R to build the Relation Graph
RG(U,R).

Interaction Graph. Given the set of users U in a
social network, and given that u1, u2 ∈ U , we draw
an edge (u1, u2) iff u1 has retweeted, replied to a
tweet of u2 or otherwise mentioned u2: we use the
set of those edges I to build the Interaction Graph
IG(U, I).

The decision to use two graphs goes back to (Hu-
berman et al., 2008), who note that the relationship
between followers and followees results in a dense
graph; but since individuals truly interact only with
a few carefully selected peers, detecting influence is
easier in the resulting sparse graph of interactions.
In our perception of the original social network and
in the two graphs we derive from it, potentially in-
fluential nodes are the targets of edges, in the sense
that the likelihood of a node being influential intu-
itively increases with the number of incoming edges
to it. It is important to note that in our proposed
framework only the largest connected component
of IG and RG is considered, because some of the
attributes to be extracted, particularly attributes
related to community structure and centrality, are
computed per connected component, see Table 1.
In the remainder of this work DG denotes an un-
weighted, directed graph like RG or IG.

3.2.2. Deriving Line Graphs

Our InfluenceLearner begins with the method in-
troduced by Evans et al. (Evans & Lambiotte,
2009) for detecting overlapping communities, which
occur frequently in social networks. Their main
idea is to cluster the social network on the basis
of edges instead of nodes, since nodes can belong to
more than one community, whereas edges indicate
a one-to-one relationship between two entities and
therefore no overlaps occur. A node is then assigned
to all the communities its adjacent edges belong to.
To this purpose, Evans et al. transform a graph G
into a line graph L(G), whereby nodes from G are
represented as edges in L(G), whereas edges from
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G are transformed into nodes in L(G). After a suc-
cessful transformation any community detection al-
gorithm can be applied to L(G) in order to unveil its
community structure. But we need to adapt (Evans
& Lambiotte, 2009) as first step, because the origi-
nal implementation requires too much memory for
large graphs. Since the resulting line graph of DG,
L(DG), is dense, we reduce memory consumption
in our modification.

Our modification 8 takes as input the set of users
U , incoming and outgoing edges of DG and trans-
forms DG into its corresponding line graph L(DG)
by exploiting the following observation: a node s
from DG may only exist in L(DG) if it “connects”
two edges in DG. ”Connect” in this sense means
that one edge is pointing toward s, whereas the
other one is going outward from s. In other words,
s must have at least one incoming and one out-
going edge in DG. These two edges and s can be
transformed into a valid L(DG), i.e. both edges are
transformed into nodes which are connected by s in
 L(DG), where s points from the incoming toward
the outgoing edge. Figure 3 visualizes the notion of
“connected” edges. For instance, in step 1 in DG
the red and blue edge are “connected” by node A,
as one enters (red) and the other one (blue) leaves
A. Thus, we know that A will be present in L(DG),
since it “connects” at least one pair of nodes in
L(DG), namely the red and blue node, which are
the transformed incoming (red) and outgoing (blue)
edge from DG. More formally speaking, an edge
pair (i, j), (k, l) is ”connected” by s if and only if
j = s and k = s hold, where {i, j, k, l, s} ∈ U . If no
self-links are allowed, additionally i 6= s and l 6= s
must hold.

We now describe our pseudocode (Algorithm 1).
It iterates over all users in DG (line 4) and assumes
that the current user s ”connects” an edge pair.
This holds only true in case s has at least one in-
coming and one outgoing edge in DG (line 6). Oth-
erwise, s will not be present in L(DG). If s exists
in L(DG) as an edge connecting its incoming and
outgoing edges from DG, the edge will point from
the incoming to the outgoing edge. So far, only
one incoming and outgoing edge of s were checked.
But all possible combinations of incoming and out-
going edges involving s must be transformed into
nodes in  L(DG) (line 8-9), although it might hap-
pen that certain combinations are deemed invalid

8https://github.com/fensta/linegraphcreator (10-30-
2014)

depending on the scenario (line 10), e.g. self-links
may be allowed or not. The weight w of the re-
sulting edge in L(DG) is computed according to
w = 1/out-degree(s) (line 11) and the edge is stored
in memory until either the memory limit is ex-
ceeded (line 15-16) or the transformation of DG into
L(DG) has finished (line 21-22) successfully. In the
former case, all edges of L(DG) are written to a file,
and the memory is freed again; in the latter case,
all edges stored in memory are written to this file as
well (line 21-22). Figure 3 illustrates a stepwise ex-
ample of how our modification transforms DG into
L(DG).

Algorithm 1 LineGraphCreator.

1: Input: Users, outgoing edges OE, incoming
edges IE of unweighted, directed graph DG and
maximal RAM consumption.

2: Output: Line graph L(DG).
3:

4: for each user in DG do
5: s← user
6: if user has outgoing and incoming edges

then
7: // Edge pair: (in, s), (s, out)
8: for each in ∈ IE of user do
9: for each out ∈ OE of user do

10: if (in, out) is allowed then
11: weight w ← 1/out-degree(s)
12: edge in L(DG)← (in, out, w)
13: end if
14: end for
15: if allocated RAM is consumed then
16: store computed edges in file
17: end if
18: end for
19: end if
20: end for
21: if edges in L(DG) exist then
22: store computed edges in file
23: end if

3.2.3. Community Detection on the Line Graphs

For discovering the communities without overlap
in L(DG), we choose to employ Louvain method
(Blondel et al., 2008), for it is particularly fast and
therefore suitable for our large L(RG). We note that
influence attributes (see section 3.2.4) are extracted
from DG, as overlap needs to be taken into account.
In order to identify for each node in DG its (multi-
ple) community memberships, we utilize a mapping
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Figure 2: Illustration how we identify overlapping communi-
ties in our graphs. In step 1 DG is transformed into L(DG)
using Evans’ algorithm. In this step MAP is created too:
each node in L(DG) is mapped to its respective edge from
DG. For instance, node 1 represents edge (C,A) in MAP. In
step 2 the Louvain method clusters the nodes of L(DG) (=
edges of DG) into disjunct communities. The overlapping
communities are then computed in step 3 with MAP: each
node of DG is assigned to all communities its adjacent edges
belong to. For example, we know node 1 belongs to commu-
nity 1. This implies the nodes adjacent to (C,A) belong to
the same community as this edge. Hence, A and C are part
of community 1. Likewise, we see that node 2 belongs to
community 2 in L(DG). Similarly, A and B being adjacent
to (A,B) belong to community 2. Now A belongs to the two
communities 1 and 2 at the same time.

MAP, which we create while transforming DG into
L(DG). In MAP, each edge e from DG, existing in
L(DG) as a node n, is assigned to n. Hence, each
entry in MAP is a pair < n, e >. Figure 2 illus-
trates the whole process of discovering overlapping
communities including the use of MAP.

3.2.4. Computation of the Influence Attributes

The attributes we extract are based on four cat-
egories:

1. Community : We extract attributes related to
community structure because Barbieri et al.
state in (Barbieri et al., 2013) that communi-
ties connected more frequently to the outside
world foster the spreading of messages in the
network, and therefore enable word-of-mouth
propagation.

2. Activity : In (Cha et al., 2010) the authors
report that influentials gain their importance

Figure 3: Illustration of the stepwise execution of Line-
GraphCreator to transform DG (left) into L(DG) (right).
The edges of DG have the same color as the resulting nodes
in L(DG), as edges in DG turn into nodes in L(DG). The
nodes’ colors in DG and resulting edges in L(DG) share iden-
tical colors for the same reason since nodes from DG are
transformed into edges in L(DG). We omit to display edge
weights in L(DG) due to readability. But they are computed
according to 1/out-degree(n), where n is the node currently
being processed (indicated by the grey color).
In step 1, node A is processed. It has an incoming (red)
and an outgoing edge (blue), so it exists in L(DG). More
precisely, in L(DG) both edges are turned into nodes and
are connected by A which is now converted into an edge.
Its direction depends on the involved edges in DG: it points
from the incoming to the outgoing edge. The edge weight
would be 1/out-degree(A) = 1. Steps 2 and 3 follow the
same reasoning. Since node B has two incoming edges, two
edges are added in L(DG) in a single step. Only in step 4
node D is skipped as it does not have any incoming edges.
The algorithm has now processed all nodes in DG.

over time through constant involvement of
their followers. Thus, we assume influentials
are active and engage their followers into in-
teractions.

3. Quality : In (Kong & Feng, 2011) the contribu-
tors explain that tweets with high quality char-
acterize influentials.

4. Centrality : In (Bigonha et al., 2012) the au-
thors state that well-connectedness in the net-
work is typical for influentials. Therefore, in-
fluentials are to some extend ”central” and pos-
sess more power than non-influentials.

Hereafter, we introduce the attributes we propose
for each of these four categories (cf. Table 1). All
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attributes are computed for each user separately,
once for the Relation Graph and once for the Inter-
action Graph.

No. Attribute name Category
1 Inter-community edges Community
2 # Connected communities Community
3 # Edges from influentials Community
4 # Overlaps Community
5 Potential audience Community
6 Influence Activity
7 # Interactions Activity
8 # Tweets Activity
9 TFF (Bigonha et al., 2012) Quality
10 User readability (Bigonha et al., 2012) Quality
11 User quality (Kong & Feng, 2011) Quality
12 In-degree (de Nooy et al., 2005) Centrality
13 Closeness (de Nooy et al., 2005) Centrality
14 Vertex betweenness (de Nooy et al., 2005) Centrality
15 Eigenvector centrality (de Nooy et al., 2005) Centrality
16 Edge betweenness (Girvan & Newman, 2002) Centrality

Table 1: Attributes to be extracted per user.

Community

This category encompasses following attributes:

1. Inter-community edges measures the overall
strength of a user’s connections to adjacent
communities in DG. This attribute is calcu-
lated as the sum over all inter-community
edges with weight w being taken from L(DG)
per user u1. If u1 has an outgoing edge to
a user from a different community, w of the
edge connecting both users in L(DG) has to be
added. We note that in practice w is computed
as w = 1/out-degree(u1) in DG like during the
creation of the line graph because if u1 exists in
MAP, we know that she is present in L(DG),
too. For this attribute multiple edges to the
same community contribute to the sum.

2. # Connected communities counts how often
the user is connected to other communities
in DG. We calculate it like Inter-community
edges, but now each outgoing edge contributes
equally to the end result, favoring in RG users
with many followees and in IG users with many
interactions.

3. # Edges from influentials counts how often in-
fluentials have outgoing edges to the current
user in DG as this direction is more meaning-
ful. For instance, in RG it is easy for a user to
follow an influential one, whereas the opposite
case indicates that a non-influential user is also
”interesting” to a certain extent.

4. # Overlaps counts to how many different com-
munities a user belongs to in DG. Note that it
is never larger than # Connected communities.
For example, consider a user who participates
in two communities X and Y; then # Overlaps
= 2 for this user. But if the user is linked to 8
users of X and 3 users of Y, then # Connected
communities = 11 for this user.

5. Potential audience measures how many indi-
viduals the user can reach. This is the sum of
the sizes of the communities which the user is
member of normalized by the total number of
users in DG.

Activity

This category encompasses following attributes:

1. # Interactions regarding the topic counts all
replies, retweets and mentions among collected
users using the available metadata.

2. # Tweets regarding the topic, which was se-
lected using appropriate hashtags before the
crawl, is the number of collected tweets by this
user.

3. Influence selects the median of all tweet labels
collected from that person. A tweet label is
an integer value between one and four. Higher
values imply more influential tweets. As users
rarely publish influential tweets, averaging the
labels is not as effective as choosing the me-
dian. We also experimented with selecting the
third quartile instead, but the quality of the
final models remained unaffected.

Quality & Centrality

These categories encompass the following at-
tributes:

1. TFF (Twitter Followee Follower ratio) is the
ratio of a user’s followers over her followees.
If a user has more followers than users she fol-
lows, it suggests that she is to some degree ”in-
teresting”. Thus, a larger TFF value indicates
more likelihood to be influential users. In-
stead of using the follower and followee counts
from our collected dataset, we employ those
retrieved from Twitter.

2. User readability employs the average Flesh-
Kincaid Grade Level (FKGL) score over all
tweets composed by the respective user. FKGL
describes how many years of education are
required for an individual to understand the
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given text. For this purpose, FKGL takes a
tweet’s words, syllables and sentences into ac-
count. Before calculating the respective FKGL
value, we pre-process each tweet by replacing
hashtags, URLs, popular emoticons, ”RT” (in-
dicating retweets) and user names by appropri-
ate placeholder texts. Otherwise, the FKGL
scores could be biased. For instance, assum-
ing we have the same tweet twice and the only
difference between both is the mentioned user
within the tweet, FKGL would depend on the
length of the mentioned user name. But if ev-
ery user name is replaced with the same place-
holder text, FKGL yields identical results for
both tweets, which is more intuitive.

3. User quality is determined by averaging the
tweet quality values over all collected tweets by
a user. Tweet quality is based on the assump-
tion that the more often a tweet is retweeted,
the higher its quality is. If a tweet is re-posted
by a different user, a score of 0.5 is assigned to
this tweet. If the retweet includes comments,
another 0.5 is added to the score. The lowest
value is zero, but there is no upper limit.

4. In-degree of a node: a higher in-degree intu-
itively implies a higher likelihood of an indi-
vidual to be influential in both of our graphs.

Attributes 13 − 15 are calculated in a straightfor-
ward manner.

4. Edge betweenness we add up the scores per
user whenever she is part of an edge - be it as
source or target node.

3.2.5. Learning MaxClassifier & DirectClassifier

The InfluenceLearner derives two sets of labels
which are assigned to the users as their respective
ground truth. One of which is based on tweet la-
bels, the other one on user labels from the collected
ground truth dataset that was established using the
SNAnnotator. Specifically, the DirectLabel is de-
rived directly from the user labels in that it utilizes
the user labels of the ground truth dataset. In con-
trast, the MaxLabel is derived indirectly from the
tweet labels of a user; it is computed as the high-
est label in the ground truth dataset that human
annotators assigned to any of her tweets. For each,
we build separate models on the RG and IG lead-
ing to four classifiers in total. The DirectClassifier
learns from the DirectLabel, and correspondingly
MaxClassifier learns from MaxLabel. More pre-
cisely, the DirectClassifierRG and MaxClassifierRG

are trained on the RG, while the DirectClassifierIG
and MaxClassifierIG are trained on the IG. But be-
sides using different user labels for building the clas-
sifiers, the inputs for the MaxClassifierRG and Di-
rectClassifierRG (MaxClassifierIG and DirectClas-
sifierIG) remain identical; so the same attributes
extracted from the RG (IG) are given to the appro-
priate classifiers.

The dataset obtained by using our SNAnnota-
tor exhibits a highly skewed distribution, because
influentials occur naturally more rarely than non-
influentials. We remedy this problem by using a
combination of SMOTE (Synthetic minority over-
sampling technique) (Chawla et al., 2002) and a
cost-sensitive matrix. At first, the number of in-
fluentials in the dataset is doubled by employing
SMOTE. The resulting skewed distribution is bal-
anced by setting up an appropriate cost matrix,
such that the costs of misclassifying the minority
class results in a proportionally large penalty.

3.2.6. Correlation between Influential Tweets and
Influentials Users

Due to our ground truth, we want to examine
whether influential tweets serve as indicator for in-
fluential users. To this purpose, we compare the
classifiers with respect to the type of label (MaxLa-
bel, DirectLabel) and graph (RG, IG), i.e. we com-
pare DirectClassifierRG with MaxClassifierRG and
DirectClassifierIG with MaxClassifierIG. For ana-
lyzing these correlations, we calculate Spearman’s
coefficient ρ and Pearson’s r. We employ both to
detect any potential relationships because the for-
mer can detect non-linear relationships, while the
latter can detect linear ones. Since ρ requires a
ranking among instances, we rank them on the con-
fidence of the classifier when it assigns a label. In
this experiment, we use for the statistical tests the
following null hypothesis: ”influential users do not
correlate with influential tweets”: i.e. users may be
influential no matter whether their tweets are.

3.2.7. Finding the most Predictive Attributes

Since our main goal is to identify attributes dis-
tinguishing influential users from non-influential
ones, we need to evaluate how well this subset per-
forms with respect to a standard. In our case, we
compare the classifiers learned on the subset of the
most predictive attributes with those trained on the
full set of attributes. We do this separately for all
four classifiers. More specifically, we first find the
subset of the most predictive attributes by applying
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Correlation-based Feature Extraction (CFS) to the
attributes shown in Table 1 for each of the four clas-
sifiers. The ranking of the attributes in these sub-
sets is established by ordering the attribute scores
that were assigned according to the Chi-Squared
method (χ2), which evaluates the worth of an at-
tribute according to a χ2 test with respect to the
user labels. In the next step, the classifiers based
on these selected attributes are trained according to
section 3.2.5. We then compare their performances
with the classifiers learned on all attributes to find
out if the detected attribute subset is predictive or
not. We select CFS and χ2 in our study because
they were applied successfully in the past, e.g. in
(Liu et al., 2002).

4. Experimental Validation

This section describes results from applying the
proposed framework.

4.1. Dataset

We used SNAnnotator to crawl data from Twit-
ter and have them manually annotated9. In partic-
ular, we harvested all tweets on ”Amazon Kindle”
that were posted within one week. Afterwards, we
retrieved the authors of these tweets within a sin-
gle day to avoid possible side-effects. The topic
“Amazon Kindle” was identified using the hashtags
#KINDLE, #Kindle and #kindle and all tweets are
written in English. After removing invalid tweets
and users, nine different annotators labeled the re-
maining ones manually. In the end, each tweet and
user was labeled by three different human annota-
tors. After removing 310 users and 1497 tweets,
since they were at least once assigned the label
“strange”, we select for the remaining tweets and
users the median of the three annotator labels as
final labels.

Finally, we merge the classes ”influential” and
”probably influential”, and the classes ”non-
influential” and ”probably non-influential” because
the human annotators turned out to be too reluc-
tant to assign the labels ”influential” and ”non-
influential”. A study of why this is so, is beyond

9Interested scholars can acquire our dataset; please con-
tact the first author. The dataset cannot be placed into a
public page, because tweet content cannot be published by
us (Twitter regulation). However, interested scholars can re-
trieve the tweet IDs from the first author, then obtain the
corresponding tweets directly from Twitter, and then link
the tweets with the recorded data of our dataset.)

the scope of this paper. But merging the classes
introduces noise, because it is more difficult to
distinguish between ”probably non-influential” and
”probably influential” than between ”influential”
and ”probably non-influential” or between ”non-
influential” and ”probably influential”. This makes
our learning task more challenging.

An overview of our final dataset is given in Table
2. It is obvious that RG is much denser than IG.
We also depict the number of influentials in both
graphs depending on the labels we use: if we select
them based on DirectLabel there exist 250 influ-
entials. In contrast, there are only 161 influentials
in IG, but compared to the number of users exist-
ing in this graph, the fraction of influentials has
nearly doubled. The same observation holds for in-
fluentials if we determine them based on MaxLabel.
Only 15 out of 92 influentials based on MaxLabel
are also considered influential in terms of DirectLa-
bel. Hence, only very few influentials have posted
influential tweets. It seems that constructing IG
automatically removes more non-influentials than
influentials. However, some of the influential users
are also removed from IG because we did not collect
any interactions between them and other collected
users. In RG there are 35741 tweets, but only 131
of them are influential. In IG only 25800 tweets
exist, but the fraction of influential tweets is as in
RG.

RG IG
Users 4437 1685
Edges 550931 5471

Influentials (DirectLabel) 250 (5.6%) 161 (9.6%)
Influentials (MaxLabel) 92 (2.0%) 74 (4.4%)

Influential tweets 131 (0.4%) 113 (0.4%)

Table 2: Final statistics for RG and IG. In IG exist 25800
tweets, whereas RG encompasses 35741 tweets.

4.2. Experiments

For building our four different classifiers on RG
and IG, we select Weka (Hall et al., 2009) as plat-
form. After evaluating the performance of different
classifiers (SVM, Decision Tree, Naive Bayes and
Bayesian network) in terms of ROC curves in pre-
liminary experiments, we selected a Bayesian net-
work from Weka using 10-fold cross-validation for
building our classifiers.
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4.2.1. Influential Tweets vs. Influential Users

In our first experiment, we analyze the correla-
tion between influential tweets and influential users,
i.e. that users may be influential no matter whether
their tweets are. We compare DirectClassifierRG
with MaxClassifierRG (see 2nd column of Table 3)
and DirectClassifierIG with MaxClassifierIG (3rd
column of Table 3) using ρ and Pearson’s r (first
column of 3).

In Table 3, we depict the values of the two co-
efficients and the p-values in parentheses (signifi-
cance level is 0.05). All coefficients are very low,
hence we cannot negate the null hypothesis. There
are following possible explanations for that. First,
the human annotators decide subjectively whether
a user is influential and whether a tweet is influ-
ential, so the null hypothesis may be due to the
annotators’ behavior. Moreover, the human anno-
tators have little available information on tweets
(just the tweet content) in contrast to the infor-
mation on users (all tweets of each user, personal
information and external URLs), so the labels of
the tweets may have been assigned in a less well-
informed way. Finally, there are users, e.g. celebri-
ties, for which we suspect that they have many fol-
lowers and many discussions on their tweets, be-
cause of inherent properties of the users rather than
because of the tweets’ contents. To investigate this
further, there is need for data where celebrities can
be identified and treated separately.

RG IG
ρ -0.004 (0.813) -0.023 (0.352)
r -0.022 (0.144) 0.001 (0.952)

Table 3: Results for Pearson’s r and Spearman’s coefficient ρ
when comparing the MaxClassifierRG with the DirectClas-
sifierRG (left) and the MaxClassifierIG with the DirectClas-
sifierIG (right). In parentheses are the p-values.

4.2.2. Comparison of ROC Curves

In Figure 4, the ROC curve of each final classifier
is plotted against four baseline methods. The ran-
dom baseline ”B-Random” chooses the label ”non-
influential” proportional to the ratio between in-
fluentials and non-influentials depending on which
combination of learner and graph is being used.
The remaining three baselines per classifier are cho-
sen according to their quality and the number of
incorporated categories: the best ones in terms
of ROC curve utilizing attributes related to one,

Figure 4: ROC curves of final models compared with a ran-
dom baseline (”B-Random”) and the best baselines capital-
izing attributes related to one, two and three out of four
categories. Fallout = 1 − Specificity.

two and three categories out of {community, ac-
tivity, quality, centrality}. The remaining ones are
not plotted in order to facilitate readability. The
performance of all four classifiers MaxClassifierIG,
MaxClassifierRG, DirectClassifierIG, DirectClassi-
fierRG shows an improvement over the random
baseline.

As it can be seen from Figure 4, the more cate-
gories are added, the better is the performance of
the classifier. This is visible when comparing the
random baseline with the classifier trained on at-
tributes related to a single category. But also when
utilizing more categories in the classifiers, the ROC
curves improve. However, the improvement satu-
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rates after considering three categories, since the
ROC curves of the classifiers incorporating three
categories approach our final classifiers, although
they perform slightly worse. The only exception
is MaxClassifierIG, where the baseline utilizing no
attributes related to quality outperforms the final
model. We therefore assume that less extracted at-
tributes are sufficient to detect influentials. This
is further supported by the observation that the
baselines utilizing only attributes related to three
instead of four categories are also able to compete
with the final classifiers for the RG.

We see in Figure 4 that the performance of the
classifiers on RG is higher than the performance
of the corresponding classifiers on IG. This indi-
cates that separation between influential and non-
influential tweets is easier on the Relation Graph
RG than on the Interaction Graph IG. This find-
ing is in contrast to the finding of (Bigonha et al.,
2012; Huberman et al., 2008), who also collected
tweets on a single topic and associated them to
Twitter users (we used the same approach, so the
experiments are comparable): they concluded that
Interaction Graphs represent influence better than
Relation Graphs do. A possible explanation for the
superiority of Relation Graphs may be the construc-
tion of Interaction Graphs: if the crawled dataset
contains no interactions of a user, then this user is
not in IG but is present in RG, hence RG contains
more information that can be exploited for super-
vised learning. This construction caveat can only
be amended (in an unbiased way) if we copy the
whole Twitter network; however, this is not feasi-
ble, because new tweets are added continuously to
Twitter, so sampling is inevitable.

4.3. Predictive Attributes

In Table 4, we depict the most predictive at-
tributes, where the predictive power was computed
according to CFS and χ2. The attributes in this ta-
ble achieve the same predictive performance as the
complete set of indicators in 3.2.4 10.

When we look at the most predictive attributes,
it turns out that Influence, # Interactions and TFF
are utilized across all four learners. Furthermore,

10We have also applied our classification algorithms on
various subsets of the complete set of attributes and found
again that a selection of attributes from different categories
yields better results than many attributes from the same
category. We omit the results due to lack of space.

when comparing the DirectClassifierRG with Max-
ClassifierRG and the DirectClassifierIG with Max-
ClassifierIG, we find that the selected attributes
are identical and only their rankings differ slightly.
Most notably, Influence ranks highest over all four
learners on average, which suggests that median
tweet labels do correlate with influential users to
some extent. But this relationship is weak and not
statistically significant(cf. section 4.2.1).

Now we also want to answer the question: what
happens if no tweet labels exist? The rationale is
that it is time-consuming to obtain a second set of
labels from human annotators. Since MaxClassi-
fierRG and MaxClassifierIG cannot be built with-
out the existence of tweet labels, we discard both
learners from our experiment. Therefore, we build
the DirectClassifierRG and DirectClassifierIG by
following the steps described in this paper, but now
we exclude Influence from the attributes. When
comparing the ROC curves of these classifiers, it
turns out that their performance is comparable
with the respective best baselines incorporating at-
tributes related to three categories, which are de-
picted in Figure 4. Due to space limitations we do
not include the ROC curves, but only the most dis-
criminatory attributes for the identification of in-
fluentials in Table 5. In the IG # Tweets replaces
Influence and the remaining attributes are identi-
cal as opposed to the learners incorporating this at-
tribute. Likewise, Influence is replaced by In-degree
in the RG.

In fact, if we remove any single attribute of Ta-
ble 4 from the learners, their quality remains almost
constant. Both observations suggest that all ranked
attributes in Table 1 exhibit a low correlation with
user and tweet labels. In other words, no single at-
tribute is discriminatory by itself. But once we re-
move a subset of those attributes, the ROC curves
deteriorate. This claim indicates that the differ-
ences between influentials and non-influentials are
very subtle, and therefore the attributes for identi-
fying influentials should be manifold. For example,
in our dataset the top-ranked attributes come from
attributes related to at least three different cate-
gories. Hence, it seems promising to add further
categories about influential users instead of looking
for more attributes related to the proposed cate-
gories.
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Rank RG IG
1 Edge betweenness Influence
2 Influence In-degree
3 # Tweets # Edges from

influentials
4 Eigenvector cen-

trality
# Interactions

5 # Interactions TFF
6 TFF

Rank RG IG
1 Influence In-degree
2 Edge betweenness Influence
3 # Tweets Edges from in-

fluentials
4 Closeness # Interactions
5 # Interactions TFF
6 TFF

Table 4: Subsets of most discriminatory attributes for Di-
rectClassifier (top) and MaxClassifier (bottom) ordered with
respect to their χ2 score.

Rank RG IG
1 Edge betweenness In-degree
2 In-degree Edges from in-

fluentials
3 # Tweets # Interactions
4 Eigenvector cen-

trality
# Tweets

5 # Interactions TFF
6 TFF

Table 5: Subsets of most discriminatory attributes when In-
fluence is removed for DirectClassifier ordered with respect
to their χ2 score.

4.4. How do our Influence Classification Results
compare to Influence Scores by Commercial
Services?

In our framework we concentrate on one topic
only because a user may be influential with respect
to one topic but non-influential with respect to an-
other (Cha et al., 2010). Services like Klout, Kred
and PeerIndex provide a global score that aggre-
gates influence over many topics. Although they
also deliver a score for our specific topic “’Ama-
zon Kindle’, we do not compare our results with
them since they combine information from multi-
ple social networks like Facebook and Twitter. The
topic-specific scores are computed with respect to
a more abstract topic like “books” instead of only

considering the domain “Amazon Kindle”. This
tampers the scores to a certain degree depending
on the domain. Furthermore, it is unclear whether
the global scores affect the topic-specific influence
scores somehow as these information are not pub-
licly accessible. In other words, these services have
a very different definition of influence and a very
different basis for computation (more than one so-
cial networks) so that a comparison of influential
users for the topic we studied makes no sense.

5. Conclusions

In this paper, we presented a framework for the
identification of properties that characterize influ-
ential users. In the following, we discuss our contri-
butions and identify shortcomings and issues that
require further research.

5.1. Contributions

The literature on identifying influential users is
vast, but the identification of properties peculiar
to influential users has only recently moved to the
focus of scholars. The task of discerning such
properties is impeded by the fact that there is
no agreed-upon definition of the term ”influential
user”. There are commercial services that have
their own proprietary definition of this term and,
accordingly, assign influence scores to users. We do
not study whether one of these definitions is bet-
ter than the others, but rather prefer to adhere to
a notion of influence that is closer to what people,
not service providers, perceive as ”influential user”.
Accordingly, our approach encompasses a crawling
and annotation tool, the SNAnnotator, with which
human annotators can inspect tweets and Twitter
users, and decide which of these users are influen-
tial. Our SNAnnotator incorporates a mechanism
that aggregates the votes given by the human an-
notators for each user; this mechanism compensates
for the fact that different human annotators have
different (implicit) perceptions of what constitutes
influence.

The SNAnnotator is our first contribution. It is a
self-standing tool that can be used for the construc-
tion of training datasets on user influence. For our
experiments, the SNAnnotator was used by a small
number of independent human annotators. How-
ever, the tool can be used by an arbitrary number
of independent human annotators, as is usual in the
crowdsourcing context. More precisely, scholars can
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invoke the crawling component of the SNAnnotator
to acquire tweets and associated information, and
then recruit human annotators who will use the an-
notation component to label the data.

Our second contribution is the InfluenceLearner,
a mining method that computes a large set of prop-
erties/attributes, which reflect the behavior and
community participation of social network users,
and then uses these properties to separate between
influential and non-influential users. This contribu-
tion is twofold: it consists of (i) the algorithms that
process the social network and derive the properties
from it in a 3-step workflow, and (ii) of the set of
attributes itself.

(i) The workflow of the InfluenceLearner combines
and extends the methods of (Evans & Lam-
biotte, 2009; Blondel et al., 2008) for the con-
struction of overlapping communities and the
computation of the properties/attributes on
them. We have extended the algorithm of
Evans et al. (Evans & Lambiotte, 2009) so
that it requires a constant amount of mem-
ory for creating line graphs to discover over-
lapping communities; this allows us to process
also larger graphs.

(ii) The set of properties is more comprehensive
than the sets of properties considered in earlier
works (Bigonha et al., 2012).

Scholars can apply our InfluenceLearneron any la-
beled training set, and check whether the proper-
ties we propose contribute to separation. This also
contributes to an independent validation of our ex-
periments (if a similarly acquired training dataset
is used), and to testing the potential of our set of
properties on training datasets that reflect different
definitions of the term ”influential user”.

Our third contribution concerns the findings from
our experimental results. First, we found the Rela-
tion Graph permits a better identification of influ-
ential users than the Interaction Graph; this find-
ing disagrees with earlier literature (Bigonha et al.,
2012; Huberman et al., 2008), where a superiority
of the Interaction Graph was found – for unsuper-
vised learning. Our explanation is that the Rela-
tion Graph incorporates more data that can be used
for supervised learning than the Interaction Graph,
namely data on users that had no interactions in-
side the collected snapshot but are influential mem-
bers of their communities nonetheless. This indi-
cates that the Relation Graph may be preferable for

supervised learning, albeit the Interaction Graph
might be more advantageous in unsupervised sce-
narios. Hence, when analyzing influence, it is useful
to build and exploit both graphs.

Further, our experimental results show that the
differences between influential and non-influential
users are subtle. There is no single attribute that
suffices for separation. This indicates that the sepa-
ration between influential and non-influential users
requires considering many aspects of user behav-
ior - the categories in which we organized the at-
tributes. Our results also show that it is not neces-
sary to consider all categories, although more than
one category must be considered, and that it is not
necessary to consider all attributes per category.
This is of advantage in terms of execution overhead,
since the computation of some of the attributes is
resource consuming. However, the identification of
the best subset of such attributes is still an open
issue; such a set is most likely depending on the
definition of the term ”influential user”.

Our experimental results also indicate that it is
difficult to derive a definition of ”influential user”
that reflects the perceptions of human annotators
and can be reflected in a set of derived properties.
Our approach has the advantage that it accounts
for subjective views of different people on who is
an influential user. Moreover, our framework allows
scholars to test the role of different properties for
training datasets that adhere to different definitions
of ”influence”.

A final contribution of our work is the dataset
we produced with the SNAnnotator to validate our
InfluenceLearner. As explained in 4.1, we make this
dataset available to interested scholars. It can be
used for validation of further learning algorithms,
beyond our InfluenceLearner. It can also be used to
perform analyses on how humans annotate, since it
contains detailed recordings of the activities of the
human annotators.

5.2. Limitations & Future Work

We have validated our InfluenceLearner on only
one topic and corresponding dataset. The graph
corresponding to this dataset has the same statis-
tics as the graphs of other known Twitter datasets
(e.g. power law holds for follower/followee relation-
ship); the subject of this dataset was popular but
not the most popular one, i.e. the subject is not an
outlier. Hence, we expect that our dataset is typ-
ical for the behavior of Twitter users, when they
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comment on popular subjects. Moreover, the in-
structions to our human annotators did not take
the topic into account, nor were these annotators
so chosen as to be peculiarly familiar with the sub-
ject of the dataset. Thus, also the annotation pro-
cess can be expected to be typical for any rather
popular Twitter subject. Nonetheless, experiments
on further training datasets are needed to demon-
strate the transferability of our results, concerning
the predictive power of properties and the supe-
riority of the Relation Graph over the Interaction
Graph on arbitrary popular subjects. A study of
less popular subjects would also be interesting in
this context.

Our InfluenceLearner can be applied on datasets
that adhere to any definition of ”influential user”.
In this study, we have evaluated on a dataset that
reflects the diffuse perception of influence that one
would expect from distinct and independent human
beings. Applying our InfluenceLearner on other
datasets would deliver insights on how the set of
properties we propose can describe other, propri-
etary definitions of influence. This is an appeal-
ing task for future work. However, we are more
interested in capturing the perception of influence
among humans, so we want to investigate ways of
extending the SNAnnotator to build training sets
that are more insensitive to the attitude of each
single human annotator. Indeed, the low number
of human annotators inevitably affects the general-
izability of our results. Next to the already men-
tioned option of crowdsourcing, we are interested
in studying active learning strategies, e.g. by se-
lectively sampling among the ratings of the human
annotators (Donmez et al., 2009). We plan to sup-
plement this strategy by using information about
how the annotators rating behavior changed over
time; to this purpose, we can exploit the additional
metadata recorded by the SNAnnotator during the
annotation process. To this purpose, we will inter-
pret each human annotator as a single classifier to
predict the labels of fellow annotators.

Our experimental results indicate that the prop-
erties we use are correlated. However, we have not
investigated how the properties correlate with re-
spect to the outcome (influential / non-influential
user). Building a minimal set of predictive prop-
erties is important for computational reasons;
the computation of some properties is resource-
consuming. This is an issue for future work.

Last but not least, we also want to improve
the quality of our learned model by extracting

sentiment-related attributes, as sentiment is known
to correlate with influential users (Bigonha et al.,
2012).
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