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ABSTRACT
Every day, huge volumes of sensory, transactional, and web data
are continuously generated as streams, which need to be analyzed
online as they arrive. Streaming data can be considered as one
of the main sources of what is called big data. While predictive
modeling for data streams and big data have received a lot of at-
tention over the last decade, many research approaches are typi-
cally designed for well-behaved controlled problem settings, over-
looking important challenges imposed by real-world applications.
This article presents a discussion on eight open challenges for data
stream mining. Our goal is to identify gaps between current re-
search and meaningful applications, highlight open problems, and
define new application-relevant research directions for data stream
mining. The identified challenges cover the full cycle of knowledge
discovery and involve such problems as: protecting data privacy,
dealing with legacy systems, handling incomplete and delayed in-
formation, analysis of complex data, and evaluation of stream min-
ing algorithms. The resulting analysis is illustrated by practical
applications and provides general suggestions concerning lines of
future research in data stream mining.

1. INTRODUCTION
The volumes of automatically generated data are constantly in-
creasing. According to the Digital Universe Study [18], over 2.8ZB
of data were created and processed in 2012, with a projected in-
crease of 15 times by 2020. This growth in the production of dig-
ital data results from our surrounding environment being equipped
with more and more sensors. People carrying smart phones produce
data, database transactions are being counted and stored, streams of
data are extracted from virtual environments in the form of logs or
user generated content. A significant part of such data is volatile,
which means it needs to be analyzed in real time as it arrives. Data
stream mining is a research field that studies methods and algo-
rithms for extracting knowledge from volatile streaming data [14;
5; 1]. Although data streams, online learning, big data, and adapta-
tion to concept drift have become important research topics during

the last decade, truly autonomous, self-maintaining, adaptive data
mining systems are rarely reported. This paper identifies real-world
challenges for data stream research that are important but yet un-
solved. Our objective is to present to the community a position
paper that could inspire and guide future research in data streams.
This article builds upon discussions at the International Workshop
on Real-World Challenges for Data Stream Mining (RealStream)1

in September 2013, in Prague, Czech Republic.
Several related position papers are available. Dietterich [10] presents
a discussion focused on predictive modeling techniques, that are
applicable to streaming and non-streaming data. Fan and Bifet [12]
concentrate on challenges presented by large volumes of data. Zlio-
baite et al. [48] focus on concept drift and adaptation of systems
during online operation. Gaber et al. [13] discuss ubiquitous data
mining with attention to collaborative data stream mining. In this
paper, we focus on research challenges for streaming data inspired
and required by real-world applications. In contrast to existing po-
sition papers, we raise issues connected not only with large vol-
umes of data and concept drift, but also such practical problems
as privacy constraints, availability of information, and dealing with
legacy systems.
The scope of this paper is not restricted to algorithmic challenges,
it aims at covering the full cycle of knowledge discovery from data
(CRISP [40]), from understanding the context of the task, to data
preparation, modeling, evaluation, and deployment. We discuss
eight challenges: making models simpler, protecting privacy and
confidentiality, dealing with legacy systems, stream preprocessing,
timing and availability of information, relational stream mining,
analyzing event data, and evaluation of stream mining algorithms.
Figure 1 illustrates the positioning of these challenges in the CRISP
cycle. Some of these apply to traditional (non-streaming) data min-
ing as well, but they are critical in streaming environments. Along
with further discussion of these challenges, we present our position
where the forthcoming focus of research and development efforts
should be directed to address these challenges.
In the remainder of the article, section 2 gives a brief introduction to
data stream mining, sections 3–7 discuss each identified challenge,
and section 8 highlights action points for future research.

1http://sites.google.com/site/realstream2013
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Figure 1: CRISP cycle with data stream research challenges.

2. DATA STREAM MINING
Mining big data streams faces three principal challenges: volume,
velocity, and volatility. Volume and velocity require a high volume
of data to be processed in limited time. Starting from the first arriv-
ing instance, the amount of available data constantly increases from
zero to potentially infinity. This requires incremental approaches
that incorporate information as it becomes available, and online
processing if not all data can be kept [15]. Volatility, on the other
hand, corresponds to a dynamic environment with ever-changing
patterns. Here, old data is of limited use, even if it could be saved
and processed again later. This is due to change, that can affect the
induced data mining models in multiple ways: change of the target
variable, change in the available feature information, and drift.
Changes of the target variable occur for example in credit scor-
ing, when the definition of the classification target “default” versus
“non-default” changes due to business or regulatory requirements.
Changes in the available feature information arise when new fea-
tures become available, e.g. due to a new sensor or instrument.
Similarly, existing features might need to be excluded due to regu-
latory requirements, or a feature might change in its scale, if data
from a more precise instrument becomes available. Finally, drift is
a phenomenon that occurs when the distributions of features x and
target variables y change in time. The challenge posed by drift has
been subject to extensive research, thus we provide here solely a
brief categorization and refer to recent surveys like [17].
In supervised learning, drift can affect the posterior P (y|x), the
conditional feature P (x|y), the feature P (x) and the class prior
P (y) distribution. The distinction based on which distribution is
assumed to be affected, and which is assumed to be static, serves to
assess the suitability of an approach for a particular task. It is worth
noting, that the problem of changing distributions is also present in
unsupervised learning from data streams.
A further categorization of drift can be made by:

• smoothness of concept transition: Transitions between con-
cepts can be sudden or gradual. The former is sometimes also
denoted in literature as shift or abrupt drift.

• singular or recurring contexts: In the former case, a model
becomes obsolete once and for all when its context is re-
placed by a novel context. In the latter case, a model’s con-
text might reoccur at a later moment in time, for example due
to a business cycle or seasonality, therefore, obsolete models
might still regain value.

• systematic or unsystematic: In the former case, there are
patterns in the way the distributions change that can be ex-
ploited to predict change and perform faster model adapta-
tion. Examples are subpopulations that can be identified and
show distinct, trackable evolutionary patterns. In the latter
case, no such patterns exist and drift occurs seemingly at ran-
dom. An example for the latter is fickle concept drift.

• real or virtual: While the former requires model adaptation,
the latter corresponds to observing outliers or noise, which
should not be incorporated into a model.

Stream mining approaches in general address the challenges posed
by volume, velocity and volatility of data. However, in real-world
applications these three challenges often coincide with other, to
date insufficiently considered ones.
The next sections discuss eight identified challenges for data stream
mining, providing illustrations with real world application exam-
ples, and formulating suggestions for forthcoming research.

3. PROTECTING PRIVACY AND CONFI-
DENTIALITY

Data streams present new challenges and opportunities with respect
to protecting privacy and confidentiality in data mining. Privacy
preserving data mining has been studied for over a decade (see.
e.g. [3]). The main objective is to develop such data mining tech-
niques that would not uncover information or patterns which com-
promise confidentiality and privacy obligations. Modeling can be
done on original or anonymized data, but when the model is re-
leased, it should not contain information that may violate privacy
or confidentiality. This is typically achieved by controlled distor-
tion of sensitive data by modifying the values or adding noise.
Ensuring privacy and confidentiality is important for gaining trust
of the users and the society in autonomous, stream data mining
systems. While in offline data mining a human analyst working
with the data can do a sanity check before releasing the model, in
data stream mining privacy preservation needs to be done online.
Several existing works relate to privacy preservation in publishing
streaming data (e.g. [46]), but no systematic research in relation to
broader data stream challenges exists.
We identify two main challenges for privacy preservation in mining
data streams. The first challenge is incompleteness of information.
Data arrives in portions and the model is updated online. There-
fore, the model is never final and it is difficult to judge privacy
preservation before seeing all the data. For example, suppose GPS
traces of individuals are being collected for modeling traffic situa-
tion. Suppose person A at current time travels from the campus to
the airport. The privacy of a person will be compromised, if there
are no similar trips by other persons in the very near future. How-
ever, near future trips are unknown at the current time, when the
model needs to be updated.
On the other hand, data stream mining algorithms may have some
inherent privacy preservation properties due to the fact that they do
not need to see all the modeling data at once, and can be incremen-
tally updated with portions of data. Investigating privacy preser-
vation properties of existing data stream algorithms makes another
interesting direction for future research.



The second important challenge for privacy preservation is concept
drift. As data may evolve over time, fixed privacy preservation
rules may no longer hold. For example, suppose winter comes,
snow falls, and much less people commute by bike. By knowing
that a person comes to work by bike and having a set of GPS traces,
it may not be possible to identify this person uniquely in summer,
when there are many cyclists, but possible in winter. Hence, an im-
portant direction for future research is to develop adaptive privacy
preservation mechanisms, that would diagnose such a situation and
adapt themselves to preserve privacy in the new circumstances.

4. STREAMED DATA MANAGEMENT
Most of the data stream research concentrates on developing pre-
dictive models that address a simplified scenario, in which data is
already pre-processed, completely and immediately available for
free. However, successful business implementations depend strongly
on the alignment of the used machine learning algorithms with
both, the business objectives, and the available data. This section
discusses often omitted challenges connected with streaming data.

4.1 Streamed Preprocessing
Data preprocessing is an important step in all real world data anal-
ysis applications, since data comes from complex environments,
may be noisy, redundant, contain outliers and missing values. Many
standard procedures for preprocessing offline data are available and
well established, see e.g. [33]; however, the data stream setting in-
troduces new challenges that have not received sufficient research
attention yet.
While in traditional offline analysis data preprocessing is a once-off
procedure, usually done by a human expert prior to modeling, in the
streaming scenario manual processing is not feasible, as new data
continuously arrives. Streaming data needs fully automated pre-
processing methods, that can optimize the parameters and operate
autonomously. Moreover, preprocessing models need to be able to
update themselves automatically along with evolving data, in a sim-
ilar way as predictive models for streaming data do. Furthermore,
all updates of preprocessing procedures need to be synchronized
with the subsequent predictive models, otherwise after an update in
preprocessing the data representation may change and, as a result,
the previously used predictive model may become useless.
Except for some studies, mainly focusing on feature construction
over data streams, e.g. [49; 4], no systematic methodology for data
stream preprocessing is currently available.
As an illustrative example for challenges related to data preprocess-
ing, consider predicting traffic jams based on mobile sensing data.
People using navigation services on mobile devices can opt to send
anonymized data to the service provider. Service providers, such as
Google, Yandex or Nokia, provide estimations and predictions of
traffic jams based on this data. First, the data of each user is mapped
to the road network, the speed of each user on each road segment
of the trip is computed, data from multiple users is aggregated, and
finally the current speed of the traffic is estimated.
There are a lot of data preprocessing challenges associated with
this task. First, noisiness of GPS data might vary depending on
location and load of the telecommunication network. There may
be outliers, for instance, if somebody stopped in the middle of a
segment to wait for a passenger, or a car broke. The number of
pedestrians using mobile navigation may vary, and require adaptive
instance selection. Moreover, road networks may change over time,
leading to changes in average speeds, in the number of cars and
even car types (e.g. heavy trucks might be banned, new optimal
routes emerge). All these issues require automated preprocessing

actions before feeding the newest data to the predictive models.
The problem of preprocessing for data streams is challenging due to
the challenging nature of the data (continuously arriving and evolv-
ing). An analyst cannot know for sure, what kind of data to expect
in the future, and cannot deterministically enumerate possible ac-
tions. Therefore, not only models, but also the procedure itself
needs to be fully automated.
This research problem can be approached from several angles. One
way is to look at existing predictive models for data streams, and
try to integrate them with selected data preprocessing methods (e.g.
feature selection, outlier definition and removal).
Another way is to systematically characterize the existing offline
data preprocessing approaches, try to find a mapping between those
approaches and problem settings in data streams, and extend pre-
processing approaches for data streams in such a way as traditional
predictive models have been extended for data stream settings.
In either case, developing individual methods and methodology for
preprocessing of data streams would bridge an important gap in the
practical applications of data stream mining.

4.2 Timing and Availability of Information
Most algorithms developed for evolving data streams make simpli-
fying assumptions on the timing and availability of information. In
particular, they assume that information is complete, immediately
available, and received passively and for free. These assumptions
often do not hold in real-world applications, e.g., patient monitor-
ing, robot vision, or marketing [43]. This section is dedicated to the
discussion of these assumptions and the challenges resulting from
their absence. For some of these challenges, corresponding situ-
ations in offline, static data mining have already been addressed
in literature. We will briefly point out where a mapping of such
known solutions to the online, evolving stream setting is easily fea-
sible, for example by applying windowing techniques. However,
we will focus on problems for which no such simple mapping ex-
ists and which are therefore open challenges in stream mining.

4.2.1 Handling Incomplete Information
Completeness of information assumes that the true values of all
variables, that is of features and of the target, are revealed eventu-
ally to the mining algorithm.
The problem of missing values, which corresponds to incomplete-
ness of features, has been discussed extensively for the offline,
static settings. A recent survey is given in [45]. However, only few
works address data streams, and in particular evolving data streams.
Thus several open challenges remain, some are pointed out in the
review by [29]: how to address the problem that the frequency in
which missing values occur is unpredictable, but largely affects the
quality of imputations? How to (automatically) select the best im-
putation technique? How to proceed in the trade-off between speed
and statistical accuracy?
Another problem is that of missing values of the target variable. It
has been studied extensively in the static setting as semi-supervised
learning (SSL, see [11]). A requirement for applying SSL tech-
niques to streams is the availability of at least some labeled data
from the most recent distribution. While first attempts to this prob-
lem have been made, e.g. the online manifold regularization ap-
proach in [19] and the ensembles-based approach suggested by
[11], improvements in speed and the provision of performance guar-
antees remain open challenges. A special case of incomplete infor-
mation is “censored data” in Event History Analysis (EHA), which
is described in section 5.2. A related problem discussed below is
active learning (AL, see [38]).



4.2.2 Dealing with Skewed Distributions
Class imbalance, where the class prior probability of the minor-
ity class is small compared to that of the majority class, is a fre-
quent problem in real-world applications like fraud detection or
credit scoring. This problem has been well studied in the offline
setting (see e.g. [22] for a recent book on that subject), and has
also been studied to some extent in the online, stream-based setting
(see [23] for a recent survey). However, among the few existing
stream-based approaches, most do not pay attention to drift of the
minority class, and as [23] pointed out, a more rigorous evaluation
of these algorithms on real-world data needs yet to be done.

4.2.3 Handling Delayed Information
Latency means information becomes available with significant de-
lay. For example, in the case of so-called verification latency, the
value of the preceding instance’s target variable is not available be-
fore the subsequent instance has to be predicted. On evolving data
streams, this is more than a mere problem of streaming data inte-
gration between feature and target streams, as due to concept drift
patterns show temporal locality [2]. It means that feedback on the
current prediction is not available to improve the subsequent pre-
dictions, but only eventually will become available for much later
predictions. Thus, there is no recent sample of labeled data at all
that would correspond to the most-recent unlabeled data, and semi-
supervised learning approaches are not directly applicable.
A related problem in static, offline data mining is that addressed
by unsupervised transductive transfer learning (or unsupervised do-
main adaptation): given labeled data from a source domain, a pre-
dictive model is sought for a related target domain in which no
labeled data is available. In principle, ideas from transfer learning
could be used to address latency in evolving data streams, for ex-
ample by employing them in a chunk-based approach, as suggested
in [43]. However, adapting them for use in evolving data streams
has not been tried yet and constitutes a non-trivial, open task, as
adaptation in streams must be fast and fully automated and thus
cannot rely on iterated careful tuning by human experts.
Furthermore, consecutive chunks constitute several domains, thus
the transitions between several subsequent chunks might provide
exploitable patterns of systematic drift. This idea has been in-
troduced in [27], and a few so-called drift-mining algorithms that
identify and exploit such patterns have been proposed since then.
However, the existing approaches cover only a very limited set of
possible drift patterns and scenarios.

4.2.4 Active Selection from Costly Information
The challenge of intelligently selecting among costly pieces of in-
formation is the subject of active learning research. Active stream-
based selective sampling [38] describes a scenario, in which in-
stances arrive one-by-one. While the instances’ feature vectors are
provided for free, obtaining their true target values is costly, and the
definitive decision whether or not to request this target value must
be taken before proceeding to the next instance. This corresponds
to a data stream, but not necessarily to an evolving one. As a result,
only a small subset of stream-based selective sampling algorithms
is suited for non-stationary environments. To make things worse,
many contributions do not state explicitly whether they were de-
signed for drift, neither do they provide experimental evaluations
on such evolving data streams, thus leaving the reader the ardu-
ous task to assess their suitability for evolving streams. A first, re-
cent attempt to provide an overview on the existing active learning
strategies for evolving data streams is given in [43]. The challenges
for active learning posed by evolving data streams are:

• uncertainty regarding convergence: in contrast to learning
in static contexts, due to drift there is no guarantee that with
additional labels the difference between model and reality
narrows down. This leaves the formulation of suitable stop
criteria a challenging open issue.

• necessity of perpetual validation: even if there has been
convergence due to some temporary stability, the learned hy-
potheses can get invalidated at any time by subsequent drift.
This can affect any part of the feature space and is not nec-
essarily detectable from unlabeled data. Thus, without per-
petual validation the mining algorithm might lock itself to a
wrong hypothesis without ever noticing.

• temporal budget allocation: the necessity of perpetual vali-
dation raises the question of optimally allocating the labeling
budget over time.

• performance bounds: in the case of drifting posteriors, no
theoretical work exists that provides bounds for errors and
label requests. However, deriving such bounds will also re-
quire assuming some type of systematic drift.

The task of active feature acquisition, where one has to actively
select among costly features, constitutes another open challenge on
evolving data streams: in contrast to the static, offline setting, the
value of a feature is likely to change with its drifting distribution.

5. MINING ENTITIES AND EVENTS
Conventional stream mining algorithms learn over a single stream
of arriving entities. In subsection 5.1, we introduce the paradigm
of entity stream mining, where the entities constituting the stream
are linked to instances (structured pieces of information) from fur-
ther streams. Model learning in this paradigm involves the incor-
poration of the streaming information into the stream of entities;
learning tasks include cluster evolution, migration of entities from
one state to another, classifier adaptation as entities re-appear with
another label than before.
Then, in subsection 5.2, we investigate the special case where en-
tities are associated with the occurrence of events. Model learning
then implies identifying the moment of occurrence of an event on
an entity. This scenario might be seen as a special case of entity
stream mining, since an event can be seen as a degenerate instance
consisting of a single value (the event’s occurrence).

5.1 Entity Stream Mining
Let T be a stream of entities, e.g. customers of a company or pa-
tients of a hospital. We observe entities over time, e.g. on a com-
pany’s website or at a hospital admission vicinity: an entity appears
and re-appears at discrete time points, new entities show up. At a
time point t, an entity e ∈ T is linked with different pieces of in-
formation - the purchases and ratings performed by a customer, the
anamnesis, the medical tests and the diagnosis recorded for the pa-
tient. Each of these information pieces ij(t) is a structured record
or an unstructured text from a stream Tj , linked to e via the foreign
key relation. Thus, the entities in T are in 1-to-1 or 1-to-n relation
with entities from further streams T1, . . . , Tm (stream of purchases,
stream of ratings, stream of complaints etc). The schema describ-
ing the streams T, T1, . . . , Tm can be perceived as a conventional
relational schema, except that it describes streams instead of static
sets.
In this relational setting, the entity stream mining task corresponds
to learning a model ζT over T , thereby incorporating information
from the adjoint streams T1, . . . , Tm that ”feed” the entities in T .



Albeit the members of each stream are entities, we use the term
”entity” only for stream T – the target of learning, while we denote
the entities in the other streams as ”instances”. In the unsupervised
setting, entity stream clustering encompasses learning and adapting
clusters over T , taking account the other streams that arrive at dif-
ferent speeds. In the supervised setting, entity stream classification
involves learning and adapting a classifier, notwithstanding the fact
that an entity’s label may change from one time point to the next,
as new instances referencing it arrive.

5.1.1 Challenges of Aggregation
The first challenge of entity stream mining task concerns informa-
tion summarization: how to aggregate into each entity e at each
time point t the information available on it from the other streams?
What information should be stored for each entity? How to deal
with differences in the speeds of the individual streams? How to
learn over the streams efficiently? Answering these questions in a
seamless way would allow us to deploy conventional stream mining
methods for entity stream mining after aggregation.
The information referencing a relational entity cannot be held per-
petually for learning, hence aggregation of the arriving streams is
necessary. Information aggregation over time-stamped data is tra-
ditionally practiced in document stream mining, where the objec-
tive is to derive and adapt content summaries on learned topics.
Content summarization on entities, which are referenced in the doc-
ument stream, is studied by Kotov et al., who maintain for each
entity the number of times it is mentioned in the news [26].
In such studies, summarization is a task by itself. Aggregation of
information for subsequent learning is a bit more challenging, be-
cause summarization implies information loss - notably informa-
tion about the evolution of an entity. Hassani and Seidl monitor
health parameters of patients, modeling the stream of recordings
on a patient as a sequence of events [21]: the learning task is then
to predict forthcoming values. Aggregation with selective forget-
ting of past information is proposed in [25; 42] in the classification
context: the former method [25] slides a window over the stream,
while the latter [42] forgets entities that have not appeared for a
while, and summarizes the information in frequent itemsets, which
are then used as new features for learning.

5.1.2 Challenges of Learning
Even if information aggregation over the streams T1, . . . , Tm is
performed intelligently, entity stream mining still calls for more
than conventional stream mining methods. The reason is that enti-
ties of stream T re-appear in the stream and evolve. In particular,
in the unsupervised setting, an entity may be linked to conceptu-
ally different instances at each time point, e.g. reflecting a cus-
tomer’s change in preferences. In the supervised setting, an entity
may change its label; for example, a customer’s affinity to risk may
change in response to market changes or to changes in family sta-
tus. This corresponds to entity drift, i.e. a new type of drift beyond
the conventional concept drift pertaining to model ζT . Hence, how
should entity drift be traced, and how should the interplay between
entity drift and model drift be captured?
In the unsupervised setting, Oliveira and Gama learn and monitor
clusters as states of evolution [32], while [41] extend that work to
learn Markov chains that mark the entities’ evolution. As pointed
out in [32], these states are not necessarily predefined – they must
be subject of learning. In [43], we report on further solutions to
the entity evolution problem and to the problem of learning with
forgetting over multiple streams and over the entities referenced by
them.
Conventional concept drift also occurs when learning a model over

entities, thus the challenges pertinent to stream mining also apply
here. One of these challenges, and one much discussed in the con-
text of big data, is volatility. In relational stream mining, volatility
refers to the entity itself, not only to the stream of instances that
reference the entities. Finally, an entity is ultimately big data by
itself, since it is described by multiple streams. Hence, next to the
problem of dealing with new forms of learning and new aspects of
drift, the subject of efficient learning and adaption in the Big Data
context becomes paramount.

5.2 Analyzing Event Data
Events are an example for data that occurs often yet is rarely ana-
lyzed in the stream setting. In static environments, events are usu-
ally studied through event history analysis (EHA), a statistical me-
thod for modeling and analyzing the temporal distribution of events
related to specific objects in the course of their lifetime [9]. More
specifically, EHA is interested in the duration before the occurrence
of an event or, in the recurrent case (where the same event can oc-
cur repeatedly), the duration between two events. The notion of
an event is completely generic and may indicate, for example, the
failure of an electrical device. The method is perhaps even better
known as survival analysis, a term that originates from applications
in medicine, in which an event is the death of a patient and survival
time is the time period between the beginning of the study and the
occurrence of this event. EHA can also be considered as a special
case of entity stream mining described in section 5.1, because the
basic statistical entities in EHA are monitored objects (or subjects),
typically described in terms of feature vectors x ∈ Rn, together
with their survival time s. Then, the goal is to model the depen-
dence of s on x. A corresponding model provides hints at possible
cause-effect relationships (e.g., what properties tend to increase a
patient’s survival time) and, moreover, can be used for predictive
purposes (e.g., what is the expected survival time of a patient).
Although one might be tempted to approach this modeling task as
a standard regression problem with input (regressor) x and out-
put (response) s, it is important to notice that the survival time s
is normally not observed for all objects. Indeed, the problem of
censoring plays an important role in EHA and occurs in different
facets. In particular, it may happen that some of the objects sur-
vived till the end of the study at time tend (also called the cut-off
point). They are censored or, more specifically, right censored,
since tevent has not been observed for them; instead, it is only
known that tevent > tend. In snapshot monitoring [28], the data
stream may be sampled multiple times, resulting in a new cut-off
point for each snapshot. Unlike standard regression analysis, EHA
is specifically tailored for analyzing event data of that kind. It is
built upon the hazard function as a basic mathematical tool.

5.2.1 Survival function and hazard rate
Suppose the time of occurrence of the next event (since the start or
the last event) for an object x is modeled as a real-valued random
variable T with probability density function f(· |x). The hazard
function or hazard rate h(· |x) models the propensity of the occur-
rence of an event, that is, the marginal probability of an event to
occur at time t, given that no event has occurred so far:

h(t |x) = f(t |x)
S(t |x) =

f(t |x)
1− F (t |x) ,

where S(· |x) is the survival function and F (· |x) the cumulative
distribution of f(· |x). Thus,

F (t |x) = P(T ≤ t) =
∫ t

0

f(u |x) du



is the probability of an event to occur before time t. Correspond-
ingly, S(t |x) = 1 − F (t |x) is the probability that the event did
not occur until time t (the survival probability). It can hence be
used to model the probability of the right-censoring of the time for
an event to occur.
A simple example is the Cox proportional hazard model [9], in
which the hazard rate is constant over time; thus, it does depend
on the feature vector x = (x1, . . . , xn) but not on time t. More
specifically, the hazard rate is modeled as a log-linear function of
the features xi:

h(t |x) = λ(x) = exp
(
x>β

)
The model is proportional in the sense that increasing xi by one
unit increases the hazard rate λ(x) by a factor of αi = exp(βi).
For this model, one easily derives the survival function S(t |x) =
1− exp(−λ(x) · t) and an expected survival time of 1/λ(x).

5.2.2 EHA on data streams
Although the temporal nature of event data naturally fits the data
stream model and, moreover, event data is naturally produced by
many data sources, EHA has been considered in the data stream
scenario only very recently. In [39], the authors propose a method
for analyzing earthquake and Twitter data, namely an extension of
the above Cox model based on a sliding window approach. The
authors of [28] modify standard classification algorithms, such as
decision trees, so that they can be trained on a snapshot stream of
both censored and non-censored data.
Like in the case of clustering [35], where one distinguishes between
clustering observations and clustering data sources, two different
settings can be envisioned for EHA on data streams:

1. In the first setting, events are generated by multiple data sources
(representing monitored objects), and the features pertain to
these sources; thus, each data source is characterized by a
feature vector x and produces a stream of (recurrent) events.
For example, data sources could be users in a computer net-
work, and an event occurs whenever a user sends an email.

2. In the second setting, events are produced by a single data
source, but now the events themselves are characterized by
features. For example, events might be emails sent by an
email server, and each email is represented by a certain set
of properties.

Statistical event models on data streams can be used in much the
same way as in the case of static data. For example, they can serve
predictive purposes, i.e., to answer questions such as “How much
time will elapse before the next email arrives?” or “What is the
probability to receive more than 100 emails within the next hour?”.
What is specifically interesting, however, and indeed distinguishes
the data stream setting from the static case, is the fact that the model
may change over time. This is a subtle aspect, because the hazard
model h(t |x) itself may already be time-dependent; here, how-
ever, t is not the absolute time but the duration time, i.e., the time
elapsed since the last event. A change of the model is compara-
ble to concept drift in classification, and means that the way in
which the hazard rate depends on time t and on the features xi
changes over time. For example, consider the event “increase of
a stock rate” and suppose that βi = log(2) for the binary feature
xi = energy sector in the above Cox model (which, as already
mentioned, does not depend on t). Thus, this feature doubles the
hazard rate and hence halves the expected duration between two
events. Needless to say, however, this influence may change over
time, depending on how well the energy sector is doing.

Dealing with model changes of that kind is clearly an important
challenge for event analysis on data streams. Although the problem
is to some extent addressed by the works mentioned above, there
is certainly scope for further improvement, and for using these ap-
proaches to derive predictive models from censored data. Besides,
there are many other directions for future work. For example, since
the detection of events is a main prerequisite for analyzing them,
the combination of EHA with methods for event detection [36] is
an important challenge. Indeed, this problem is often far from triv-
ial, and in many cases, events (such as frauds, for example) can only
be detected with a certain time delay; dealing with delayed events
is therefore another important topic, which was also discussed in
section 4.2.

6. EVALUATION OF DATA STREAM AL-
GORITHMS

All of the aforementioned challenges are milestones on the road to
better algorithms for real-world data stream mining systems. To
verify if these challenges are met, practitioners need tools capa-
ble of evaluating newly proposed solutions. Although in the field
of static classification such tools exist, they are insufficient in data
stream environments due to such problems as: concept drift, lim-
ited processing time, verification latency, multiple stream struc-
tures, evolving class skew, censored data, and changing misclassi-
fication costs. In fact, the myriad of additional complexities posed
by data streams makes algorithm evaluation a highly multi-criterial
task, in which optimal trade-offs may change over time.
Recent developments in applied machine learning [6] emphasize
the importance of understanding the data one is working with and
using evaluation metrics which reflect its difficulties. As men-
tioned before, data streams set new requirements compared to tra-
ditional data mining and researchers are beginning to acknowl-
edge the shortcomings of existing evaluation metrics. For exam-
ple, Gama et al. [16] proposed a way of calculating classification
accuracy using only the most recent stream examples, therefore al-
lowing for time-oriented evaluation and aiding concept drift detec-
tion. Methods which test the classifier’s robustness to drifts and
noise on a practical, experimental level are also starting to arise
[34; 47]. However, all these evaluation techniques focus on sin-
gle criteria such as prediction accuracy or robustness to drifts, even
though data streams make evaluation a constant trade-off between
several criteria [7]. Moreover, in data stream environments there is
a need for more advanced tools for visualizing changes in algorithm
predictions with time.
The problem of creating complex evaluation methods for stream
mining algorithms lies mainly in the size and evolving nature of
data streams. It is much more difficult to estimate and visualize,
for example, prediction accuracy if evaluation must be done on-
line, using limited resources, and the classification task changes
with time. In fact, the algorithm’s ability to adapt is another as-
pect which needs to be evaluated, although information needed to
perform such evaluation is not always available. Concept drifts are
known in advance mainly when using synthetic or benchmark data,
while in more practical scenarios occurrences and types of concepts
are not directly known and only the label of each arriving instance
is known. Moreover, in many cases the task is more complicated, as
labeling information is not instantly available. Other difficulties in
evaluation include processing complex relational streams and cop-
ing with class imbalance when class distributions evolve with time.
Finally, not only do we need measures for evaluating single aspects
of stream mining algorithms, but also ways of combining several of
these aspects into global evaluation models, which would take into



account expert knowledge and user preferences.
Clearly, evaluation of data stream algorithms is a fertile ground
for novel theoretical and algorithmic solutions. In terms of pre-
diction measures, data stream mining still requires evaluation tools
that would be immune to class imbalance and robust to noise. In
our opinion, solutions to this problem should involve not only met-
rics based on relative performance to baseline (chance) classifiers,
but also graphical measures similar to PR-curves or cost curves.
Furthermore, there is a need for integrating information about con-
cept drifts in the evaluation process. As mentioned earlier, possible
ways of considering concept drifts will depend on the information
that is available. If true concepts are known, algorithms could be
evaluated based on: how often they detect drift, how early they de-
tect it, how they react to it, and how quickly they recover from it.
Moreover, in this scenario, evaluation of an algorithm should be
dependent on whether it takes place during drift or during times of
concept stability. A possible way of tackling this problem would be
the proposal of graphical methods, similar to ROC analysis, which
would work online and visualize concept drift measures alongside
prediction measures. Additionally, these graphical measures could
take into account the state of the stream, for example, its speed,
number of missing values, or class distribution. Similar methods
could be proposed for scenarios where concepts are not known in
advance, however, in these cases measures should be based on drift
detectors or label-independent stream statistics. Above all, due to
the number of aspects which need to be measured, we believe that
the evaluation of data stream algorithms requires a multi-criterial
view. This could be done by using inspirations from multiple crite-
ria decision analysis, where trade-offs between criteria are achieved
using user-feedback. In particular, a user could showcase his/her
criteria preferences (for example, between memory consumption,
accuracy, reactivity, self-tuning, and adaptability) by deciding be-
tween alternative algorithms for a given data stream. It is worth
noticing that such a multi-criterial view on evaluation is difficult to
encapsulate in a single number, as it is usually done in traditional
offline learning. This might suggest that researchers in this area
should turn towards semi-qualitative and semi-quantitative evalua-
tion, for which systematic methodologies should be developed.
Finally, a separate research direction involves rethinking the way
we test data stream mining algorithms. The traditional train, cross-
validate, test workflow in classification is not applicable for sequen-
tial data, which makes, for instance, parameter tuning much more
difficult. Similarly, ground truth verification in unsupervised learn-
ing is practically impossible in data stream environments. With
these problems in mind, it is worth stating that there is still a short-
age of real and synthetic benchmark datasets. Such a situation
might be a result of non-uniform standards for testing algorithms on
streaming data. As community, we should decide on such matters
as: What characteristics should benchmark datasets have? Should
they have prediction tasks attached? Should we move towards on-
line evaluation tools rather than datasets? These questions should
be answered in order to solve evaluation issues in controlled envi-
ronments before we create measures for real-world scenarios.

7. FROM ALGORITHMS TO DECISION
SUPPORT SYSTEMS

While a lot of algorithmic methods for data streams are already
available, their deployment in real applications with real streaming
data presents a new dimension of challenges. This section points
out two such challenges: making models simpler and dealing with
legacy systems.

7.1 Making models simpler, more reactive, and
more specialized

In this subsection, we discuss aspects like the simplicity of a model,
its proper combination of offline and online components, and its
customization to the requirements of the application domain. As
an application example, consider the French Orange Portal2, which
registers millions of visits daily. Most of these visitors are only
known through anonymous cookie IDs. For all of these visitors,
the portal has the ambition to provide specific and relevant contents
as well as printing ads for targeted audiences. Using information
about visits on the portal the questions are: what part of the portal
does each cookie visit, and when and which contents did it consult,
what advertisement was sent, when (if) was it clicked. All this in-
formation generates hundreds of gigabytes of data each week. A
user profiling system needs to have a back end part to preprocess
the information required at the input of a front end part, which will
compute appetency to advertising (for example) using stream min-
ing techniques (in this case a supervised classifier). Since the ads
to print change regularly, based on marketing campaigns, the ex-
tensive parameter tuning is infeasible as one has to react quickly to
change. Currently, these tasks are either solved using bandit meth-
ods from game theory [8], which impairs adaptation to drift, or
done offline in big data systems, resulting in slow reactivity.

7.1.1 Minimizing parameter dependence
Adaptive predictive systems are intrinsically parametrized. In most
of the cases, setting these parameters, or tuning them is a difficult
task, which in turn negatively affects the usability of these systems.
Therefore, it is strongly desired for the system to have as few user
adjustable parameters as possible. Unfortunately, the state of the
art does not produce methods with trustworthy or easily adjustable
parameters. Moreover, many predictive modeling methods use a
lot of parameters, rendering them particularly impractical for data
stream applications, where models are allowed to evolve over time,
and input parameters often need to evolve as well.
The process of predictive modeling encompasses fitting of parame-
ters on a training dataset and subsequently selecting the best model,
either by heuristics or principled methods. Recently, model selec-
tion methods have been proposed that do not require internal cross-
validation, but rather use the Bayesian machinery to design regu-
larizers with data dependent priors [20]. However, they are not yet
applicable in data streams, as their computational time complexity
is too high and they require all examples to be kept in memory.

7.1.2 Combining offline and online models
Online and offline learning are mostly considered as mutually ex-
clusive, but it is their combination that might enhance the value
of data the most. Online learning, which processes instances one-
by-one and builds models incrementally, has the virtue of being
fast, both in the processing of data and in the adaptation of mod-
els. Offline (or batch) learning has the advantage of allowing the
use of more sophisticated mining techniques, which might be more
time-consuming or require a human expert. While the first allows
the processing of “fast data” that requires real-time processing and
adaptivity, the second allows processing of “big data” that requires
longer processing time and larger abstraction.
Their combination can take place in many steps of the mining pro-
cess, such as the data preparation and the preprocessing steps. For
example, offline learning on big data could extract fundamental and
sustainable trends from data using batch processing and massive
parallelism. Online learning could then take real-time decisions
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from online events to optimize an immediate pay-off. In the online
advertisement application mentioned above, the user-click predic-
tion is done within a context, defined for example by the currently
viewed page and the profile of the cookie. The decision which
banner to display is done online, but the context can be prepro-
cessed offline. By deriving meta-information such as “the profile is
a young male, the page is from the sport cluster”, the offline com-
ponent can ease the online decision task.

7.1.3 Solving the right problem
Domain knowledge may help to solve many issues raised in this
paper, by systematically exploiting particularities of application do-
mains. However, this is seldom considered, as typical data stream
methods are created to deal with a large variety of domains. For in-
stance, in some domains the learning algorithm receives only par-
tial feedback upon its prediction, i.e. a single bit of right-or-wrong,
rather than the true label. In the user-click prediction example, if a
user does not click on a banner, we do not know which one would
have been correct, but solely that the displayed one was wrong.
This is related to the issues on timing and availability of informa-
tion discussed in section 4.2.
However, building predictive models that systematically incorpo-
rate domain knowledge or domain specific information requires
to choose the right optimization criteria. As mentioned in sec-
tion 6, the data stream setting requires optimizing multiple criteria
simultaneously, as optimizing only predictive performance is not
sufficient. We need to develop learning algorithms, which mini-
mize an objective function including intrinsically and simultane-
ously: memory consumption, predictive performance, reactivity,
self monitoring and tuning, and (explainable) auto-adaptivity. Data
streams research is lacking methodologies for forming and opti-
mizing such criteria.
Therefore, models should be simple so that they do not depend on
a set of carefully tuned parameters. Additionally, they should com-
bine offline and online techniques to address challenges of big and
fast data, and they should solve the right problem, which might
consist in solving a multi-criteria optimization task. Finally, they
have to be able to learn from a small amount of data and with low
variance [37], to react quickly to drift.

7.2 Dealing with Legacy Systems
In many application environments, such as financial services or
health care systems, business critical applications are in operation
for decades. Since these applications produce massive amounts of
data, it becomes very promising to process these amounts of data
by real-time stream mining approaches. However, it is often impos-
sible to change existing infrastructures in order to introduce fully
fledged stream mining systems. Rather than changing existing in-
frastructures, approaches are required that integrate stream mining
techniques into legacy systems. In general, problems concerning
legacy systems are domain-specific and encompass both technical
and procedural issues. In this section, we analyze challenges posed
by a specific real-world application with legacy issues — the ISS
Columbus spacecraft module.

7.2.1 ISS Columbus
Spacecrafts are very complex systems, exposed to very different
physical environments (e.g. space), and associated to ground sta-
tions. These systems are under constant and remote monitoring
by means of telemetry and commands. The ISS Columbus mod-
ule has been in operation for more than 5 years. For some time,
it is pointed out that the monitoring process is not as efficient as
previously expected [30]. However, we assume that data stream

mining can make a decisive contribution to enhance and facilitate
the required monitoring tasks. Recently, we are planning to use the
ISS Columbus module as a technology demonstrator for integrat-
ing data stream processing and mining into the existing monitoring
processes [31]. Figure 2 exemplifies the failure management sys-
tem (FMS) of the ISS Columbus module. While it is impossible to
simply redesign the FMS from scratch, we can outline the follow-
ing challenges.

1. ISS Columbus module

4. Mission archiv

2. Ground control 

centre
5. Assembly, integration, 

and test facility

3. Engineering support 

centre

Figure 2: ISS Columbus FMS

7.2.2 Complexity
Even though spacecraft monitoring is very challenging by itself,
it becomes increasingly difficult and complex due to the integra-
tion of data stream mining into such legacy systems. However,
it was assumed to enhance and facilitate current monitoring pro-
cesses. Thus, appropriate mechanism are required to integrate data
stream mining into the current processes to decrease complexity.

7.2.3 Interlocking
As depicted in Figure 2, the ISS Columbus module is connected
to ground instances. Real-time monitoring must be applied aboard
where computational resources are restricted (e.g. processor speed
and memory or power consumption). Near real-time monitoring or
long-term analysis must be applied on-ground where the downlink
suffers from latencies because of a long transmission distance, is
subject to bandwidth limitations, and continuously interrupted due
to loss of signal. Consequently, new data stream mining mecha-
nisms are necessary which ensure a smooth interlocking function-
ality of aboard and ground instances.

7.2.4 Reliability and Balance
The reliability of spacecrafts is indispensable for astronauts’ health
and mission success. Accordingly, spacecrafts pass very long and
expensive planning and testing phases. Hence, potential data stream
mining algorithms must ensure reliability and the integration of
such algorithms into legacy systems must not cause critical side
effects. Furthermore, data stream mining is an automatic process
which neglects interactions with human experts, while spacecraft
monitoring is a semi-automatic process and human experts (e.g.



the flight control team) are responsible for decisions and conse-
quent actions. This problem poses the following question: How to
integrate data stream mining into legacy systems when automation
needs to be increased but the human expert needs to be maintained
in the loop? Abstract discussions on this topic are provided by ex-
pert systems [44] and the MAPE-K reference model [24]. Expert
systems aim to combine human expertise with artificial expertise
and the MAPE-K reference model aims to provide an autonomic
control loop. A balance must be struck which considers both afore-
mentioned aspects appropriately.
Overall, the Columbus study has shown that extending legacy sys-
tems with real time data stream mining technologies is feasible and
it is an important area for further stream-mining research.

8. CONCLUDING REMARKS
In this paper, we discussed research challenges for data streams,
originating from real-world applications. We analyzed issues con-
cerning privacy, availability of information, relational and event
streams, preprocessing, model complexity, evaluation, and legacy
systems. The discussed issues were illustrated by practical applica-
tions including GPS systems, Twitter analysis, earthquake predic-
tions, customer profiling, and spacecraft monitoring. The study of
real-world problems highlighted shortcomings of existing method-
ologies and showcased previously unaddressed research issues.
Consequently, we call the data stream mining community to con-
sider the following action points for data stream research:

• developing methods for ensuring privacy with incomplete
information as data arrives, while taking into account the
evolving nature of data;

• considering the availability of information by developing mod-
els that handle incomplete, delayed and/or costly feedback;

• taking advantage of relations between streaming entities;

• developing event detection methods and predictive models
for censored data;

• developing a systematic methodology for streamed prepro-
cessing;

• creating simpler models through multi-objective optimiza-
tion criteria, which consider not only accuracy, but also com-
putational resources, diagnostics, reactivity, interpretability;

• establishing a multi-criteria view towards evaluation, dealing
with absence of the ground truth about how data changes;

• developing online monitoring systems, ensuring reliability of
any updates, and balancing the distribution of resources.

As our study shows, there are challenges in every step of the CRISP
data mining process. To date, modeling over data streams has
been viewed and approached as an extension of traditional meth-
ods. However, our discussion and application examples show that
in many cases it would be beneficial to step aside from building
upon existing offline approaches, and start blank considering what
is required in the stream setting.
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E. Hauke, J. Stamminger, and E. Frisk. The columbus module
as a technology demonstrator for innovative failure manage-
ment. In German Air and Space Travel Congress, 2012.

[32] M. Oliveira and J. Gama. A framework to monitor clusters
evolution applied to economy and finance problems. Intelli-
gent Data Analysis, 16(1):93–111, 2012.

[33] D. Pyle. Data Preparation for Data Mining. Morgan Kauf-
mann Publishers Inc., 1999.

[34] T. Raeder and N. Chawla. Model monitor (m2): Evaluat-
ing, comparing, and monitoring models. Journal of Machine
Learning Research, 10:1387–1390, 2009.

[35] P. Rodrigues and J. Gama. Distributed clustering of ubiqui-
tous data streams. WIREs Data Mining and Knowledge Dis-
covery, pages 38–54, 2013.

[36] T. Sakaki, M. Okazaki, and Y. Matsuo. Tweet analysis for
real-time event detection and earthquake reporting system de-
velopment. IEEE Trans. on Knowledge and Data Engineer-
ing, 25(4):919–931, 2013.

[37] C. Salperwyck and V. Lemaire. Learning with few examples:
An empirical study on leading classifiers. In Proc. of the 2011
Int. Joint Conf. on Neural Networks, IJCNN, pages 1010–
1019, 2011.

[38] B. Settles. Active Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan and Claypool
Publishers, 2012.

[39] A. Shaker and E. Hüllermeier. Survival analysis on data
streams: Analyzing temporal events in dynamically chang-
ing environments. Int. Journal of Applied Mathematics and
Computer Science, 24(1):199–212, 2014.

[40] C. Shearer. The CRISP-DM model: the new blueprint for data
mining. J Data Warehousing, 2000.

[41] Z. Siddiqui, M. Oliveira, J. Gama, and M. Spiliopoulou.
Where are we going? predicting the evolution of individu-
als. In Proc. of the 11th Int. Conf. on Advances in Intelligent
Data Analysis, IDA, pages 357–368, 2012.

[42] Z. Siddiqui and M. Spiliopoulou. Classification rule mining
for a stream of perennial objects. In Proc. of the 5th Int. Conf.
on Rule-based Reasoning, Programming, and Applications,
RuleML, pages 281–296, 2011.

[43] M. Spiliopoulou and G. Krempl. Tutorial ”mining multiple
threads of streaming data”. In Proc. of the Pacific-Asia Conf.
on Knowledge Discovery and Data Mining, PAKDD, 2013.

[44] D. Waterman. A Guide to Expert Systems. Addison-Wesley,
1986.

[45] W. Young, G. Weckman, and W. Holland. A survey of
methodologies for the treatment of missing values within
datasets: limitations and benefits. Theoretical Issues in Er-
gonomics Science, 12, January 2011.

[46] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia. Continu-
ous privacy preserving publishing of data streams. In Proc.
of the 12th Int. Conf. on Extending Database Technology,
EDBT, pages 648–659, 2009.

[47] I. Zliobaite. Controlled permutations for testing adaptive
learning models. Knowledge and Information Systems, In
Press, 2014.

[48] I. Zliobaite, A. Bifet, M. Gaber, B. Gabrys, J. Gama,
L. Minku, and K. Musial. Next challenges for adaptive learn-
ing systems. SIGKDD Explorations, 14(1):48–55, 2012.

[49] I. Zliobaite and B. Gabrys. Adaptive preprocessing for
streaming data. IEEE Trans. on Knowledge and Data Engi-
neering, 26(2):309–321, 2014.


