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ABSTRACT
Facing ever increasing volumes of data but limited human
annotation capabilities, active learning strategies for select-
ing the most informative labels gain in importance. How-
ever, the choice of an appropriate active learning strategy
itself is a complex task that requires to consider different
criteria such as the informativeness of the selected labels,
the versatility with respect to classification algorithms, or
the processing speed. This raises the question, which com-
binations of active learning strategies and classification al-
gorithms are the most promising to apply. A general answer
to this question, without application-specific, label-intensive
experiments on each dataset, is highly desirable, as active
learning is applied in situations with limited labelled data.
Therefore, this paper studies several combinations of differ-
ent active learning strategies and classification algorithms
and evaluates them in a series of comparative experiments.
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1. INTRODUCTION
While the volumes of data are constantly increasing [9],

human annotation and supervision capacities remain lim-
ited. This raises the need for approaches that help in the
efficient allocation of these capacities [15]. Active machine
learning [22] provides such approaches for determining and
selecting the most valuable information. In classification
tasks, this corresponds to selecting the instance from a set
of candidates, whose label is expected to improve a classi-
fier’s performance the most [23]. Given the large number of
approaches that have been proposed in literature, the choice
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of the most appropriate active learning strategy constitutes
itself a complex task: multiple criteria such as the informa-
tiveness of the selected labels, the versatility of the approach
with respect to classification algorithms, or the processing
speed of the approach need to be considered.

Active learning is applied in situations with very limited
initial labelled data. Thus, knowing the overall most promis-
ing combinations of active learning strategies and classifi-
cation algorithms without performing application-specific,
label-intensive experiments on each novel dataset is highly
desirable. This paper addresses this question by providing
results of an experimental performance comparison of sev-
eral combinations of popular classification algorithms and
active learning strategies. In Section 2, related surveys are
reviewed before discussing selected active learning strate-
gies. These strategies are then experimentally evaluated in
Section 3, before concluding in Section 4.

2. ACTIVE LEARNING APPROACHES
This paper addresses the pool-based [23, 6] active learn-

ing scenario for binary classifiers, where an active classifier
has access to a pool of unlabelled instances U = {(x, .)}.
Repeatedly, the best instance (x∗, .) ∈ U is selected, its la-
bel y∗ is requested from an oracle, and it is moved from U
to the set of labelled instanced L = {(x, y)} to retrain the
classifier. In particular, this paper focuses on a sequential
labelling scenario, in contrast to batch-based active learning
where multiple instances are labelled in one iteration [10].
Various existing approaches for this scenario are surveyed in
[22, 6, 23, 8]. The technical report [22], the machine learning
encyclopedia entry [6] on active learning, and more recently
the textbook [23] provide an introduction to active learn-
ing, as well as a good overview on various families of active
learning approaches. While comparing theoretical aspects of
the different approaches, they do not include an empirical
evaluation. Recently, [8] surveys different approaches based
on uncertainty sampling and instance correlation and pro-
vide a categorisation of different approaches. However, the
performance analysis in that review is limited to runtime
evaluations, thus leaving the question on the classification
performance of different approaches open. An experimen-
tal classification performance evaluation and comparison of
some approaches was done in the active learning challenge,
published in [11]. It is remarked therein that a key to success
in active learning is handling the trade-off between explo-
ration and exploitation: the former samples in regions with
yet little collected information, the latter investigates re-



gions where the current model suspects the decision bound-
ary. According to [11, page iv], the overall winners use com-
binations of random and uncertainty sampling to tackle this
trade-off.

This comparative study’s focus are fast approaches that
are usable with any classification technique. Building on the
results above, we compare random sampling, uncertainty
sampling, and a combination of both that tackles exploration-
exploration. In addition to these popular approaches, we in-
clude the very recently proposed probabilistic active learning
approach, which implicitly balances exploration-exploration.
We now briefly review these approaches, before continuing
with the experimental evaluation in the next chapter.

2.1 Random Sampling
A simple and fast baseline is random sampling, where in-

stances are selected at random with equal probability. De-
spite the simplicity of this purely explorative strategy, it has
been shown to be difficult to be beaten consistently [2] and
is one of the most popular active learning baselines [11].

2.2 Uncertainty Sampling
A very popular active learning strategy is uncertainty sam-

pling [17], which is frequently used as baseline (e.g. in the
active learning competition [11]). This is a purely exploita-
tive strategy that relies on the current model to compute
so-called uncertainty measures. These serve as proxies for
a candidate’s impact on the classification performance, and
the candidate with the highest uncertainty is selected for la-
belling. In the seminal work of [17], a probabilistic classifier
is used on a candidate to compute the posterior of its most
likely class. The absolute difference between this posterior
estimate and 0.5 is used as uncertainty measure (lower val-
ues denoting higher uncertainty). The formula for picking
x∗LC is the following according to [22]:

x∗LC = argmax
x

(1− Pθ(ŷ | x)) (1)

x∗LC is the instance from the pool of unlabelled data Du
which our model θ is least confident in while ŷ is the class for
which the model calculated the highest posterior estimate so
ŷ = argmax

y
Pθ(y | x). In addition to this confidence-based

uncertainty measure, other common measures [23] are en-
tropy or the margin between a candidate and the decision
boundary. However, [22] notes that for binary classification
problems classifiers the measures margin, confidence and en-
tropy result in the same ranking and querying of instances.

This strategy is easy to implement and computationally
efficient, having an asymptotic time complexity of O(|U|).
Thus, it is also usable in time critical applications, or in big
data scenarios with large numbers of unlabelled instances,
or on fast data streams [27]. Nevertheless, a known disad-
vantage [25] of uncertainty sampling is that these proxies
do not consider the number of similar instances on which
the posterior estimates are made or the decision boundaries
are drawn. The reported results of empirical evaluations are
somewhat inconclusive, with some authors (e.g. [4, 20, 13])
reporting even worse performance on some data sets than
random sampling. Its major problems are that it can get
stuck in regions with high Bayesian error, especially when
the data is not linearly separable. Additionally, as this strat-
egy queries instances that are close to the current decision

Figure 1: This figure shows a configuration during
the active learning process on a two-class problem.
The red line is the current decision boundary and
the coloured stars and squares are the labelled in-
stances. The stars on the top left are a subconcept
which will probably be missed by uncertainty sam-
pling because those instances are far away from the
decision boundary which means the classifier is very
confident in their prediction. The star with the blue
circle on the other hand is an outlier that is very
close to the current decision boundary and there-
fore highly likely to be queried for labelling.

boundary, it is prone to missing subconcepts if the initial de-
cision boundary is unfavourable for the data. Furthermore,
it can also tend to query outliers which are not represen-
tative for the underlying distribution. Figure 1 illustrates
some of the problems while the work of [26] and [25] dis-
cuss the issue of querying outliers. Following next is a short
description of a mixed strategy that combines random and
uncertainty sampling.

2.3 Semi-Random Sampling
The combination of uncertainty and random sampling to

combine exploitation and exploration has been suggested
for example in [16, 11, 27]. Most recently, [27] uses a mix
of random and uncertainty sampling on streams to tackle
the problem of missing exploration with uncertainty mea-
sures. This is especially useful in stream-based active learn-
ing where concepts and thus the optimal decision bound-
ary might change over time. The authors speculate that
in a static scenario it is likely that uncertainty sampling
beats the mixed strategies, as the decision boundary does
not change over time. We investigate this hypothesis by
studying the performance of a mixed strategy for pool-based
active learning, which switches between uncertainty and ran-
dom sampling. This strategy alternately applies random
sampling and uncertainty sampling, beginning with the ini-
tial instance being selected randomly from the unlabelled
pool Du. This strategy has the same asymptotic time com-
plexity as uncertainty sampling, but is faster by a constant
factor due to using random selection half of the time.

2.4 Probabilistic Active Learning
Probabilistic active learning is a novel approach [14] that

directly optimises a performance measure like accuracy, us-
ing statistically sound methods to guide the degree of ex-



ploitation and exploration. In this aspect it is comparable
to error reduction approaches (proposed in [19]), while still
having linear complexity like the fast uncertainty methods.
For binary classification with Parzen Window classifiers, it
was already shown that probabilistic active learning achieves
comparable or superior performance than error reduction.

Probabilistic active learning builds on the smoothness as-
sumption commonly used in semi-supervised learning [5],
which suggests that the influence of an instance on the clas-
sification process is the highest in its neighbourhood:

Semi-supervised smoothness assumption: If two
points x1, x2 in a high-density region are close,
then so should be the corresponding outputs y1, y2.

Therefore, the method proposed in [14] considers within
the neighbourhood of an instance the number of labelled
instances n and the share of positive labels therein p̂ =
n+

n
. These two values are the necessary label statistics

ls = (n, p̂), which should be provided by the classifier be-
ing used. As the real posterior p of that neighbourhood
and the label realisation y of the instance under consider-
ation are unknown, they are modelled as hidden variables.
The so-called probabilistic gain is calculated as the expec-
tation over all possible realisations of p and y of the gain in
classification performance. This gain is then weighted with
the density in an instance’s neighbourhood, considering the
union of the labelled and unlabelled pool Du ∪Dl, in order
to prefer dense regions and avoid outliers. This probabilis-
tic gain calculation models the true posterior p within the
neighbourhood as being Beta-distributed, and the label re-
alisation y as being Bernoulli-distributed with p as an input.
Thus, the number of positive instances in the neighbourhood
n+ = n · p̂ is binomially distributed.

For accuracy or misclassification loss, a closed-form so-
lution for computing the probabilistic gain is given in [13],
which is called optimised probabilistic active learning (OPAL).
The gain G can be written as:

GOPAL(n, p̂, τ,m) =
(n+ 1)

m
·
(

n
n · p̂

)
· (2)(

IML(n, p̂, τ, 0, 0)−
m∑
k=0

IML(n, p̂, τ,m, k)

)
(3)

Here, τ is the cost of a false positive (normalised such
that the costs of a false positive and a false negative add
up to one), m denotes how many labels can be purchased in
a given neighbourhood, and IML(n, p̂, τ,m, k) is a function
that is proportional to the expected misclassification loss in
case k positive labels were among the m purchased ones:

IML(n, p̂, τ,m, k) =

(
m
k

)
· (4)

(1− τ) · Γ(1−k+m+n−np̂)Γ(2+k+np̂)
Γ(3+m+n)

np̂+k
n+m

< τ

(τ − τ2) · Γ(1−k+m+n−np̂)Γ(1+k+np̂)
Γ(2+m+n)

np̂+k
n+m

= τ

τ · Γ(2−k+m+n−np̂)Γ(1+k+np̂)
Γ(3+m+n)

np̂+k
n+m

> τ

(5)

Here, Γ(z) is Legendre’s gamma function (see e.g. [18,
p. 206]).

For computing the probabilistic gain, the label statistics of
an instance’s neighbourhood are required, which consist of

total number of labels (n) and the share of positives therein
(p̂). These statistics need to be estimated. In [13, 14], it
is argued that using estimates provided by a probabilistic
classifier might be favourable to using kernel frequency esti-
mates as substitutes. For investigating this experimentally,
different ways of computing the label statistics for different
classifiers need to be specified.

When using kernel frequency estimates as substitutes, [14]
propose the following formula that employs Gaussian kernels
with a bandwidth of σ:

LC(x,L) ≈
∑
xi∈L

exp

(
−‖x− xi‖

2

2σ2

)
(6)

The total number of labels is then n = LC(x,L), where
L is the set of all labelled instances, and the the share of
positives is p̂ = LC(x,L+)/LC(x,L), where L+ is the subset
of labelled positive instances.

For Parzen-Window Classifiers [4], which use kernel den-
sity estimates for computing an instance’s posterior proba-
bilities, the kernel frequency estimates above for p̂ are identi-
cal to the classifier’s posterior estimates. However, for Naive
Bayes Classifiers these frequency estimates differ from the
posterior estimates, due to the conditional independence as-
sumed when computing the latter. Therefore, the classi-
fier’s estimates should be used directly for p̂. For k-Nearest
Neighbour Classifiers, these posterior estimates are obtained
by the number of positives among an instance’s k nearest
neighbours. In analogy, for Tree-Based Classifiers such as
Hoeffding Trees [7], the probabilistic estimates are obtained
from the summary statistics in an instance’s leaf, i.e. by
simply dividing the number of positives by the total number
of labels processed in that leaf.

In the classification algorithms discussed above, a label
influences solely a particular region in the feature space.
However, for some classifiers this does not hold. For ex-
ample, in Logistic Regression Classifiers an instance might
alter the decision on instances that are far away. Thus, even
though Logistic Regression Classifiers provide probabilistic
estimates that might be used for p̂, they might be not suited
for probabilistic active learning.

3. EXPERIMENTAL COMPARISON
Motivated by the relationship between the active learn-

ing strategies described in Section 2, the following three hy-
potheses guide the experimental evaluation:

1. Probabilistic active learning outperforms random, semi-
random and uncertainty sampling.

2. The performance of probabilistic active learning drops
if the label statistics are calculated independently of
the classifier being used.

3. Semi-random sampling does not outperform random
and uncertainty sampling at the same time.

The first hypothesis is motivated by the capability of prob-
abilistic active learning to balance exploration and exploita-
tion by computing the expected improvement in classifi-
cation performance in an instance’s neighbourhood, rather
than using a heuristic approach. However, this relies on
good estimates of the labelled information in an instance’s
neighbourhood, which are provided by the label statistics.
These estimates depend on the classifier, thus computing



them independently from the classifier is expected to dete-
riorate the performance, motivating the second hypothesis.
The third hypothesis is motivated by the speculation in [27]
that mixed strategies might be inferior in a pool-based set-
ting with static concepts (as in our setting). According to
this hypothesis, the performance of semi-random sampling
should be between that of random and uncertainty sampling.

For testing these hypotheses, we follow the standard active
learning assumptions, discussed and motivated in [22]:

1. All labels cost the same.

2. The labels that are bought are always correct.

3. The classifier learns incrementally on the actively se-
lected labels, without any other change.

3.1 Experimental Setup
Active learning works on the trade-off between minimising

the number of labels and maximising classification perfor-
mance. For a single experiment, this trade-off is commonly
visualised using learning curves, which depict the classi-
fier’s performance at different amounts of labelled instances.
However, for a multitude of combinations of active learning
approaches and datasets (as in this comparative study), a
multitude of curves need to be compared. For matters of
space and readability, different approaches for aggregating
this information were used in literature. One proposed solu-
tion is to compare the area under the learning curve [11] but
this method loses information about dominance at the dif-
ferent stages and might be misleading when learning curves
intersect. Therefore, we use the approach suggested in [13]
of pairwise comparisons at specific points in the learning
process, in order to see which strategy dominates or is dom-
inated by another strategy at which point in the learning
process. Furthermore, in order to improve reliability of the
results, we use n-fold-cross-validation to divide the datasets
into different partitions of test and training sets. The ex-
perimental setup used for the comparison of active learning
strategies is summarised by the following workflow:

1. Employ the selected strategies with the selected clas-
sifiers and datasets.

2. Compare the accuracy of two competing strategies af-
ter a specific number of instances were labelled and
create two performance vectors for that point of com-
parison by collecting the achieved performance from
all the folds of the 10-fold-cross-validation and do that
for 10 random seeds. This gives us two vectors of the
length 100 as there are 10 folds for each of the 10 seeds
equalling a 100-fold-cross-validation.

3. Test if the performance vector of one strategy is sig-
nificantly better or worse using a two-sided Wilcoxon
test with a significance level of 0.05.

4. Repeat steps 2 and 3 for all classifiers on the individ-
ual datasets and also over all datasets at the same time
which gives us a summary of how the strategies per-
form for a specific classifier over all datasets. The cho-
sen comparison points are the performances obtained
after labelling 20 and 40 instances. Accuracy is se-
lected as performance measure.

5. Check if the results of step 4 are in line with the hy-
potheses or contradict them.

Table 1: Specifications of the data sets that were
used for the experiments

Data Set Instances Attributes Pr(+)
Seeds 210 7 33%
Vertebral 310 6 32%
Haberman 306 3 73%
Checkerboard1 308 2 44%
Checkerboard2 392 2 49%

3.1.1 Datasets
For the experiments the following real-world datasets from

the UCI machine learning repository [1] are used: haber-
man, seeds, vertebral. Additionally, two synthetic datasets
are included, namely checkerboard1 and checkerboard2 [4,
13]. The datasets are preprocessed such that there are no
missing or invalid values and normalised such that all at-
tribute values are between zero and one. The specifications
of the data sets can be seen in Table 1. All the datasets are
randomised and divided into ten folds, which are then used
in the cross-validation of all active learning strategies. Since
the datasets are small and the learning process converges
quickly, the budget is set to 40 instances.

3.1.2 Algorithms
The compared active learning approaches are random sam-

pling (uniform selection probability), semi-random and un-
certainty sampling (both using confidence as uncertainty
measure), and probabilistic active learning (using accuracy
with τ = 0.5 as performance measure) which were intro-
duced in Sections 2.1 till 2.4.

All active learning strategies are evaluated on the same set
of (incremental) classifiers. Those classifiers, implemented
in MOA [3] and WEKA [12], are Hoeffding trees, Naive
Bayes, logistic regression, k-nearest-neighbour and a Parzen-
Window classifier which was implemented by the authors
and is described in [4]. All algorithms were run on a desk-
top computer (Intel i5-760 with 2.8GHz and 8GB RAM).

The label statistics are once calculated by using the prob-
abilistic classifier’s posterior estimate for the values of the
share of positives (p̂) in a neighbourhood. Furthermore, to
evaluate the effect of calculating the label statistics indepen-
dently of the classifier, estimates based on kernel frequency
estimates (as in [13]) over the labels are used.

3.2 Results
Based on the three hypotheses stated above, we now sum-

marise our findings in the next subsections. Tables 3 and 2
provide the complete results of the experimental evaluation.

Table 3 shows the performance comparison after 20 and
40 labels over all datasets for different pairs of active learn-
ing strategies. The numbers are the percentages of wins of
the strategy in the row versus the strategies in the columns,
excluding ties. Thus, symmetric values sum up to one. Sig-
nificantly better results of a two-sided Wilcoxon test with
a significance level of 0.05 are denoted with a ‘*‘, signifi-
cantly worse ones with a ‘-‘. The active learning strategies
are denoted with Pal (probabilistic active learning), Conf
(confidence-based uncertainty sampling), Ran (random sam-
pling), and Semi (semi-random sampling). For the columns
on the left, the posterior estimates p̂ come from the prob-
abilistic classifier, while for the columns on the right they



are calculated independently of the classifier by using kernel
frequency estimates. In both cases, the number of labels n
is calculated by kernel frequency estimates.

Table 2 summarises for different classifiers the effect on
Pal’s performance of using independently calculated poste-
rior estimates against estimates takes from the probabilistic
classifier. That is, the values correspond to the number of
wins (excluding ties) of Pal with independently calculated
posterior estimates (by using kernel frequency estimates)
against Pal with estimates taken directly from the proba-
bilistic classifier. A ‘*‘ shows that the performance is signif-
icantly better and a ‘-‘ shows that it is significantly worse
using a two-sided Wilcoxon test with a significance level of
0.05. One can see that in the majority of cases calculating
both parameters independently leads to a significantly worse
classifier performance.

3.2.1 Probabilistic Active Learning Is Superior
In order to assess this statement, Table 3 provides the re-

sults for different classifiers. For a Parzen Window classifier
(top-most cells), probabilistic active learning outperforms
the other strategies significantly over all datasets, both af-
ter 20 and 40 acquired labels. This classifier’s posterior
estimates are kernel frequency estimates, thus there is no
difference between its left and right subtables.

For Hoeffding Trees, this does only hold when posterior
estimates by the classifier are used (64.26%, 64.92%, 62.7%
at 20 labels, and 63.19%, 69%, 66.55% at 40 labels against
confidence-based uncertainty sampling, random sampling,
and semi-random sampling, respectively). When using in-
dependently calculated posterior estimates for probabilistic
active learning, its performance is neither significantly bet-
ter nor significantly worse than that of other approaches.

For Naive Bayes with posterior estimates by the classifier,
Pal is again always significantly better. For Naive Bayes
with kernel frequency estimates for the posterior, Pal is sig-
nificantly better than random while not significantly worse
than any other strategy.

For k-Nearest Neighbour and Logistic Regression, prob-
abilistic active learning is not better: with k-NN it is sig-
nificantly worse than uncertainty sampling or semi-random-
sampling, but not significantly worse than random sampling.
With logistic regression, results are inconclusive, but prob-
abilistic active learning performs in some constellations sig-
nificantly worse than uncertainty or random sampling. The
reason for the weak performance of probabilistic active learn-
ing in combination with Logistic Regression is that here the
smoothness assumption is violated, as an instance might in-
fluence the decision boundary at locations that are far away
from its coordinates. The problem with k-Nearest Neigh-
bour is a different one: here, the number of labels that are
considered by the classifier is constantly set to three. Thus,
the value n used in the label statistics is misleading the ac-
tive learner. Overall, hypothesis one is confirmed for Parzen
Window, Hoeffding Tree, and Naive Bayes, but not for k-
Nearest Neighbour and Logistic Regression Classifiers.

3.2.2 Independently Calculated Label Statistics
Reduce the Performance

The results discussed above already indicate an impor-
tant relationship between the label statistics and the per-
formance of the probabilistic active learning approach. To
assess this relationship further, and to test the second hy-

pothesis that classifier-independent calculation of these label
statistics reduces the performance, Table 2 shows the re-
sults of a pairwise comparison between probabilistic active
learning with and without independently computed poste-
rior estimates. It depicts the percentage of cases where the
performance with independent estimates was greater than
the performance with estimates coming from the classifier.
For example, the Naive Bayes classifier with independent
estimates outperformed its counterpart with dependent es-
timates in 47.62% of the cases after 10 labels were bought
and only in 25,76% of the cases after 40 labels were bought
which is significantly worse being indicated by the ’-’ sign.
A ’*’ ! would indicate that it performed better in most of
the cases and that the result can be deemed significant.

Interestingly, the results depend on the learning stage:
after processing the first ten labels (comparison point CP =
10), there is not yet a difference in performance between
the two ways of calculating the label statistic’s p̂ (except for
3-Nearest Neighbour). In the later learning stages (CP =
20, 30, 40), this changes, and using independently estimated
values for p̂ significantly reduces performance for Hoeffding-
Trees, Naive Bayes, and Logistic Regression. For 3-Nearest
Neighbour, the results are different, but on this particular
type of classifier the probabilistic active learning approach
is not recommendable anyway.

One should note that this evaluation was limited to the
effect of independent posterior estimates for p̂, while always
independently calculated estimates for the number of labels
n were used. The situation of using for both values (for n
and p̂) kernel frequency estimates corresponds to using two
classifiers, namely a Parzen-Window classifier for instance
selection, and the chosen classifier for prediction. This is
the typical scenario of label reusability as introduced by [24].
Summarising, the second hypothesis is confirmed for Hoeffd-
ing Trees, Naive Bayes, and Logistic Regression Classifiers.

Table 2: Effect of Independent Label Statistics Cal-
culation
Labels H-Tree Naive B. Log. Reg. 3-NN
CP=10 54.33% 47.62% 49.82% 34.92%-
CP=20 39.3%- 38.78%- 37.67%- 54.32%
CP=30 32.17%- 28.35%- 30.93%- 48.67%
CP=40 30.4%- 25.76%- 37.04%- 65.82%*

3.2.3 Semi-Random Sampling is not better than both
Random and Uncertainty Sampling

The results in Table 3 confirm hypothesis three that that
semi-random-sampling is with none of the classifiers consis-
tently better (or worse) than both, random sampling and
uncertainty sampling. That is, it is never at the same time
dominating (or dominated by) both strategies. This sup-
ports the suggestions by [27] that a mixed strategy is inferior
in a static setting because either uncertainty sampling will
perform well or random will perform well and semi-random
will end up in the middle of the two. However, this does
not mean that a semi-random strategy is inferior to random
or uncertainty sampling in every setting. For some configu-
rations, semi-random sampling is slightly better than both,
but in those cases the difference is never significant. Thus,
in a real-world application where hold-out performance tests
are difficult, semi-random sampling might help to avoid the
worst-case performance. Nevertheless, for most classifier



types probabilistic active learning seems to be the better
choice, as it outperforms in general all three other methods
when the label statistics are provided by the used classifier.

4. CONCLUSION
In this paper, the performance of popular active learn-

ing strategies in combination with different classification al-
gorithms has been studied. These combinations were ex-
perimentally evaluated using 100-fold cross validation over
several different real-world and synthetic datasets. The re-
sults confirm the finding of previous studies that neither
pure exploration nor pure exploitation strategies perform
consistently well, making the handling of the trade-off be-
tween exploration and exploitation a key challenge. In ad-
dition, the results show that the recently proposed prob-
abilistic active learning approach significantly outperforms
uncertainty-sampling-based strategies when used with Bayes,
Naive Bayes or Decision-Tree Classifiers, but works not well
on k-Nearest Neighbour or Logistic Regression Classifiers.
Furthermore, it is shown that using a probabilistic classi-
fier’s estimates for the label statistics is in most cases better
than using estimates that were calculated independently of
the classifier. Finally, the results confirm the recently stated
conjecture [27] that a hybrid between random and uncer-
tainty sampling does not outperform both strategies at the
same time in a pool-based setting.

While several combinations of active learning and classi-
fication approaches have been evaluated in this paper, this
comparative study is by no means complete. Future work
will focus on evaluating further combinations, as well as in-
vestigating further ways of computing better label statis-
tics for some classification algorithms. Furthermore, com-
parisons for other active learning settings like user-based
visually-supported active learning [21] would be insightful.
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Table 3: Part A: Pairwise performance comparison after 20 and 40 labels over all datasets. It shows how
often the classifier using the strategy from the row outperformed the same classifier using the strategies
in the columns. For example, a Parzen-Window classifier using probabilistic active learning outperformed
confidence-based uncertainty sampling significantly in 69.48%, random sampling in 73,22% and semi-random
sampling in 71.98% of the cases (continues on the next page).

Parzen-Window Classifier
Posterior from Classifier, 20 labels Posterior from KFE, 20 labels

StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 69.48%* 73.22%* 71.98%* pal 0% 69.48%* 73.22%* 71.98%*
conf 30.52%- 0% 47.62%- 43.75%- conf 30.52%- 0% 47.62%- 43.75%-
ran 26.78%- 52.38%* 0% 47.82% ran 26.78%- 52.38%* 0% 47.82%
semi 28.02%- 56.25%* 52.18% 0% semi 28.02%- 56.25%* 52.18% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 69.09%* 68.19%* 66.32%* pal 0% 69.09%* 68.19%* 66.32%*
conf 30.91%- 0% 38.3%- 37.13%- conf 30.91%- 0% 38.3%- 37.13%-
ran 31.81%- 61.7%* 0% 51.93% ran 31.81%- 61.7%* 0% 51.93%
semi 33.68%- 62.87%* 48.07% 0% semi 33.68%- 62.87%* 48.07% 0%

Hoeffding-Tree Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 64.26%* 64.92%* 62.7%* pal 0% 51.66% 53.82% 49.1%
conf 35.74%- 0% 51.46% 48.92% conf 48.34% 0% 51.68% 45.17%
ran 35.08%- 48.54% 0% 49.86% ran 46.18% 48.32% 0% 44.48%
semi 37.3%- 51.08% 50.14% 0% semi 50.9% 54.83% 55.52% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 63.19%* 69%* 66.55%* pal 0% 53.06% 56.71% 50.16%
conf 36.81%- 0% 52.88% 51.24% conf 46.94% 0% 52.12% 48.48%
ran 31%- 47.12% 0% 45.48% ran 43.29% 47.88% 0% 45.42%-
semi 33.45%- 48.76% 54.52% 0% semi 49.84% 51.52% 54.58%* 0%



Table 3: Part B: Pairwise performance comparison for Naive Bayes, K-Nearest Neighbour, and Logistic
Regression Classifiers (continuation from the previous page).

Naive Bayes Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 58.97%* 64.66%* 60.7%* pal 0% 51.25% 56.1%* 55.4%*
conf 41.03%- 0% 54.57%* 51.35% conf 48.75% 0% 52.32% 55.41%*
ran 35.34%- 45.43%- 0% 47.26% ran 43.9%- 47.68% 0% 51.26%
semi 39.3%- 48.65% 52.74% 0% semi 44.6%- 44.59%- 48.74% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 63.17%* 74.5%* 67.24%* pal 0% 54.55% 56.9%* 47.93%
conf 36.83%- 0% 60.92%* 53.65% conf 45.45% 0% 56.51% 48.99%
ran 25.5%- 39.08%- 0% 41.18%- ran 43.1%- 43.49% 0% 42.94%-
semi 32.76%- 46.35% 58.82%* 0% semi 52.07% 51.01% 57.06%* 0%

K-Nearest Neighbour (K=3) Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 24.18%- 59.4% 30.34%- pal 0% 27.53%- 50% 25%-
conf 75.82%* 0% 76.02%* 65.32%* conf 72.47%* 0% 69.52%* 59.46%
ran 40.6% 23.98%- 0% 32.74%- ran 50% 30.48%- 0% 30.81%-
semi 69.66%* 34.68%- 67.26%* 0% semi 75%* 40.54% 69.19%* 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 25%- 68.59%* 43.27%- pal 0% 18.64%- 46.25% 27.55%-
conf 75%* 0% 80.57%* 80.75%* conf 81.36%* 0% 78.24%* 72.89%*
ran 31.41%- 19.43%- 0% 35.05%- ran 53.75% 21.76%- 0% 30.5%-
semi 56.73%* 19.25%- 64.95%* 0% semi 72.45%* 27.11%- 69.5%* 0%

Logistic Regression Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 40.57% 37.5%- 45.31% pal 0% 51.46% 46.05% 49.27%
conf 59.43% 0% 50.54% 55.75%* conf 48.54% 0% 44.09% 47.43%
ran 62.5%* 49.46% 0% 56.52%* ran 53.95% 55.91% 0% 51.63%
semi 54.69% 44.25%- 43.48%- 0% semi 50.73% 52.57% 48.37% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 41.21%- 42.01% 43.53% pal 0% 60.13%* 55.84% 58.13%*
conf 58.79%* 0% 52.66% 54.78% conf 39.87%- 0% 44.03% 49.68%
ran 57.99% 47.34% 0% 48.78% ran 44.16% 55.97% 0% 53.59%
semi 56.47% 45.22% 51.22% 0% semi 41.88%- 50.32% 46.41% 0%


